Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbviuneq12df | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
Ref | Expression |
---|---|
cbviuneq12df.xph | ⊢ Ⅎ𝑥𝜑 |
cbviuneq12df.yph | ⊢ Ⅎ𝑦𝜑 |
cbviuneq12df.x | ⊢ Ⅎ𝑥𝑋 |
cbviuneq12df.y | ⊢ Ⅎ𝑦𝑌 |
cbviuneq12df.xa | ⊢ Ⅎ𝑥𝐴 |
cbviuneq12df.ya | ⊢ Ⅎ𝑦𝐴 |
cbviuneq12df.b | ⊢ Ⅎ𝑦𝐵 |
cbviuneq12df.xc | ⊢ Ⅎ𝑥𝐶 |
cbviuneq12df.yc | ⊢ Ⅎ𝑦𝐶 |
cbviuneq12df.d | ⊢ Ⅎ𝑥𝐷 |
cbviuneq12df.f | ⊢ Ⅎ𝑥𝐹 |
cbviuneq12df.g | ⊢ Ⅎ𝑦𝐺 |
cbviuneq12df.xel | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) |
cbviuneq12df.yel | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) |
cbviuneq12df.xsub | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) |
cbviuneq12df.ysub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
cbviuneq12df.eq1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) |
cbviuneq12df.eq2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) |
Ref | Expression |
---|---|
cbviuneq12df | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviuneq12df.xph | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | cbviuneq12df.yph | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | cbviuneq12df.y | . . 3 ⊢ Ⅎ𝑦𝑌 | |
4 | cbviuneq12df.ya | . . 3 ⊢ Ⅎ𝑦𝐴 | |
5 | cbviuneq12df.b | . . 3 ⊢ Ⅎ𝑦𝐵 | |
6 | cbviuneq12df.xc | . . 3 ⊢ Ⅎ𝑥𝐶 | |
7 | cbviuneq12df.yc | . . 3 ⊢ Ⅎ𝑦𝐶 | |
8 | cbviuneq12df.d | . . 3 ⊢ Ⅎ𝑥𝐷 | |
9 | cbviuneq12df.g | . . 3 ⊢ Ⅎ𝑦𝐺 | |
10 | cbviuneq12df.yel | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) | |
11 | cbviuneq12df.ysub | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) | |
12 | cbviuneq12df.eq1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) | |
13 | eqimss 3977 | . . . 4 ⊢ (𝐵 = 𝐺 → 𝐵 ⊆ 𝐺) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14 | ss2iundf 41267 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
16 | cbviuneq12df.x | . . 3 ⊢ Ⅎ𝑥𝑋 | |
17 | cbviuneq12df.xa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
18 | cbviuneq12df.f | . . 3 ⊢ Ⅎ𝑥𝐹 | |
19 | cbviuneq12df.xel | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) | |
20 | cbviuneq12df.xsub | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) | |
21 | cbviuneq12df.eq2 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) | |
22 | eqimss 3977 | . . . 4 ⊢ (𝐷 = 𝐹 → 𝐷 ⊆ 𝐹) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 ⊆ 𝐹) |
24 | 2, 1, 16, 6, 8, 4, 17, 5, 18, 19, 20, 23 | ss2iundf 41267 | . 2 ⊢ (𝜑 → ∪ 𝑦 ∈ 𝐶 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
25 | 15, 24 | eqssd 3938 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ⊆ wss 3887 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-iun 4926 |
This theorem is referenced by: cbviuneq12dv 41270 |
Copyright terms: Public domain | W3C validator |