Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbviuneq12df | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
Ref | Expression |
---|---|
cbviuneq12df.xph | ⊢ Ⅎ𝑥𝜑 |
cbviuneq12df.yph | ⊢ Ⅎ𝑦𝜑 |
cbviuneq12df.x | ⊢ Ⅎ𝑥𝑋 |
cbviuneq12df.y | ⊢ Ⅎ𝑦𝑌 |
cbviuneq12df.xa | ⊢ Ⅎ𝑥𝐴 |
cbviuneq12df.ya | ⊢ Ⅎ𝑦𝐴 |
cbviuneq12df.b | ⊢ Ⅎ𝑦𝐵 |
cbviuneq12df.xc | ⊢ Ⅎ𝑥𝐶 |
cbviuneq12df.yc | ⊢ Ⅎ𝑦𝐶 |
cbviuneq12df.d | ⊢ Ⅎ𝑥𝐷 |
cbviuneq12df.f | ⊢ Ⅎ𝑥𝐹 |
cbviuneq12df.g | ⊢ Ⅎ𝑦𝐺 |
cbviuneq12df.xel | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) |
cbviuneq12df.yel | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) |
cbviuneq12df.xsub | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) |
cbviuneq12df.ysub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
cbviuneq12df.eq1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) |
cbviuneq12df.eq2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) |
Ref | Expression |
---|---|
cbviuneq12df | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviuneq12df.xph | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | cbviuneq12df.yph | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | cbviuneq12df.y | . . 3 ⊢ Ⅎ𝑦𝑌 | |
4 | cbviuneq12df.ya | . . 3 ⊢ Ⅎ𝑦𝐴 | |
5 | cbviuneq12df.b | . . 3 ⊢ Ⅎ𝑦𝐵 | |
6 | cbviuneq12df.xc | . . 3 ⊢ Ⅎ𝑥𝐶 | |
7 | cbviuneq12df.yc | . . 3 ⊢ Ⅎ𝑦𝐶 | |
8 | cbviuneq12df.d | . . 3 ⊢ Ⅎ𝑥𝐷 | |
9 | cbviuneq12df.g | . . 3 ⊢ Ⅎ𝑦𝐺 | |
10 | cbviuneq12df.yel | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) | |
11 | cbviuneq12df.ysub | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) | |
12 | cbviuneq12df.eq1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) | |
13 | eqimss 3973 | . . . 4 ⊢ (𝐵 = 𝐺 → 𝐵 ⊆ 𝐺) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14 | ss2iundf 41156 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
16 | cbviuneq12df.x | . . 3 ⊢ Ⅎ𝑥𝑋 | |
17 | cbviuneq12df.xa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
18 | cbviuneq12df.f | . . 3 ⊢ Ⅎ𝑥𝐹 | |
19 | cbviuneq12df.xel | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) | |
20 | cbviuneq12df.xsub | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) | |
21 | cbviuneq12df.eq2 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) | |
22 | eqimss 3973 | . . . 4 ⊢ (𝐷 = 𝐹 → 𝐷 ⊆ 𝐹) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 ⊆ 𝐹) |
24 | 2, 1, 16, 6, 8, 4, 17, 5, 18, 19, 20, 23 | ss2iundf 41156 | . 2 ⊢ (𝜑 → ∪ 𝑦 ∈ 𝐶 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
25 | 15, 24 | eqssd 3934 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ⊆ wss 3883 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-iun 4923 |
This theorem is referenced by: cbviuneq12dv 41159 |
Copyright terms: Public domain | W3C validator |