Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ss2iundv | Structured version Visualization version GIF version |
Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
Ref | Expression |
---|---|
ss2iundv.el | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) |
ss2iundv.sub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
ss2iundv.ss | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) |
Ref | Expression |
---|---|
ss2iundv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝑌 | |
4 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐴 | |
5 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐵 | |
6 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐶 | |
7 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐶 | |
8 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐷 | |
9 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐺 | |
10 | ss2iundv.el | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) | |
11 | ss2iundv.sub | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) | |
12 | ss2iundv.ss | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ss2iundf 41274 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 ∪ ciun 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-v 3435 df-in 3895 df-ss 3905 df-iun 4927 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |