![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ss2iundv | Structured version Visualization version GIF version |
Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
Ref | Expression |
---|---|
ss2iundv.el | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) |
ss2iundv.sub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
ss2iundv.ss | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) |
Ref | Expression |
---|---|
ss2iundv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1909 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcv 2897 | . 2 ⊢ Ⅎ𝑦𝑌 | |
4 | nfcv 2897 | . 2 ⊢ Ⅎ𝑦𝐴 | |
5 | nfcv 2897 | . 2 ⊢ Ⅎ𝑦𝐵 | |
6 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝐶 | |
7 | nfcv 2897 | . 2 ⊢ Ⅎ𝑦𝐶 | |
8 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝐷 | |
9 | nfcv 2897 | . 2 ⊢ Ⅎ𝑦𝐺 | |
10 | ss2iundv.el | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) | |
11 | ss2iundv.sub | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) | |
12 | ss2iundv.ss | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ss2iundf 42968 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 ∪ ciun 4990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-v 3470 df-in 3950 df-ss 3960 df-iun 4992 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |