![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ss2iundv | Structured version Visualization version GIF version |
Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
Ref | Expression |
---|---|
ss2iundv.el | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) |
ss2iundv.sub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) |
ss2iundv.ss | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) |
Ref | Expression |
---|---|
ss2iundv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1917 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcv 2903 | . 2 ⊢ Ⅎ𝑦𝑌 | |
4 | nfcv 2903 | . 2 ⊢ Ⅎ𝑦𝐴 | |
5 | nfcv 2903 | . 2 ⊢ Ⅎ𝑦𝐵 | |
6 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝐶 | |
7 | nfcv 2903 | . 2 ⊢ Ⅎ𝑦𝐶 | |
8 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝐷 | |
9 | nfcv 2903 | . 2 ⊢ Ⅎ𝑦𝐺 | |
10 | ss2iundv.el | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) | |
11 | ss2iundv.sub | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) | |
12 | ss2iundv.ss | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ss2iundf 42400 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-v 3476 df-in 3955 df-ss 3965 df-iun 4999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |