Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ss2iundv Structured version   Visualization version   GIF version

Theorem ss2iundv 41275
Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.)
Hypotheses
Ref Expression
ss2iundv.el ((𝜑𝑥𝐴) → 𝑌𝐶)
ss2iundv.sub ((𝜑𝑥𝐴𝑦 = 𝑌) → 𝐷 = 𝐺)
ss2iundv.ss ((𝜑𝑥𝐴) → 𝐵𝐺)
Assertion
Ref Expression
ss2iundv (𝜑 𝑥𝐴 𝐵 𝑦𝐶 𝐷)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷   𝑦,𝐺   𝑦,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐷(𝑦)   𝐺(𝑥)   𝑌(𝑥)

Proof of Theorem ss2iundv
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜑
2 nfv 1918 . 2 𝑦𝜑
3 nfcv 2908 . 2 𝑦𝑌
4 nfcv 2908 . 2 𝑦𝐴
5 nfcv 2908 . 2 𝑦𝐵
6 nfcv 2908 . 2 𝑥𝐶
7 nfcv 2908 . 2 𝑦𝐶
8 nfcv 2908 . 2 𝑥𝐷
9 nfcv 2908 . 2 𝑦𝐺
10 ss2iundv.el . 2 ((𝜑𝑥𝐴) → 𝑌𝐶)
11 ss2iundv.sub . 2 ((𝜑𝑥𝐴𝑦 = 𝑌) → 𝐷 = 𝐺)
12 ss2iundv.ss . 2 ((𝜑𝑥𝐴) → 𝐵𝐺)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ss2iundf 41274 1 (𝜑 𝑥𝐴 𝐵 𝑦𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2107  wss 3888   ciun 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-v 3435  df-in 3895  df-ss 3905  df-iun 4927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator