Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbviin | Structured version Visualization version GIF version |
Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2372. See cbviing 4965 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
cbviun.1 | ⊢ Ⅎ𝑦𝐵 |
cbviun.2 | ⊢ Ⅎ𝑥𝐶 |
cbviun.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviun.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
2 | 1 | nfcri 2893 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
3 | cbviun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfcri 2893 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
5 | cbviun.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
6 | 5 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
7 | 2, 4, 6 | cbvralw 3363 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
8 | 7 | abbii 2809 | . 2 ⊢ {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
9 | df-iin 4924 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
10 | df-iin 4924 | . 2 ⊢ ∩ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
11 | 8, 9, 10 | 3eqtr4i 2776 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 ∀wral 3063 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-iin 4924 |
This theorem is referenced by: cbviinv 4967 elrfirn2 40434 fnlimfvre 43105 smflimlem6 44198 smflim 44199 smflim2 44226 smfsup 44234 smfinflem 44237 smfinf 44238 smflimsup 44248 smfliminf 44251 |
Copyright terms: Public domain | W3C validator |