![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviin | Structured version Visualization version GIF version |
Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
cbviun.1 | ⊢ Ⅎ𝑦𝐵 |
cbviun.2 | ⊢ Ⅎ𝑥𝐶 |
cbviun.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviun.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
2 | 1 | nfcri 2926 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
3 | cbviun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfcri 2926 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
5 | cbviun.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
6 | 5 | eleq2d 2851 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
7 | 2, 4, 6 | cbvral 3379 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
8 | 7 | abbii 2844 | . 2 ⊢ {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
9 | df-iin 4795 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
10 | df-iin 4795 | . 2 ⊢ ∩ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
11 | 8, 9, 10 | 3eqtr4i 2812 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 {cab 2758 Ⅎwnfc 2916 ∀wral 3088 ∩ ciin 4793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-iin 4795 |
This theorem is referenced by: cbviinv 4834 elrfirn2 38694 fnlimfvre 41392 smflimlem6 42489 smflim 42490 smflim2 42517 smfsup 42525 smfinflem 42528 smfinf 42529 smflimsup 42539 smfliminf 42542 |
Copyright terms: Public domain | W3C validator |