Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbviin | Structured version Visualization version GIF version |
Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2379. See cbviing 4928 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
cbviun.1 | ⊢ Ⅎ𝑦𝐵 |
cbviun.2 | ⊢ Ⅎ𝑥𝐶 |
cbviun.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviun.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
2 | 1 | nfcri 2906 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
3 | cbviun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfcri 2906 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
5 | cbviun.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
6 | 5 | eleq2d 2837 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
7 | 2, 4, 6 | cbvralw 3352 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
8 | 7 | abbii 2823 | . 2 ⊢ {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
9 | df-iin 4886 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
10 | df-iin 4886 | . 2 ⊢ ∩ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
11 | 8, 9, 10 | 3eqtr4i 2791 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {cab 2735 Ⅎwnfc 2899 ∀wral 3070 ∩ ciin 4884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-iin 4886 |
This theorem is referenced by: cbviinv 4930 elrfirn2 40010 fnlimfvre 42682 smflimlem6 43775 smflim 43776 smflim2 43803 smfsup 43811 smfinflem 43814 smfinf 43815 smflimsup 43825 smfliminf 43828 |
Copyright terms: Public domain | W3C validator |