MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviun Structured version   Visualization version   GIF version

Theorem cbviun 5040
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) Add disjoint variable condition to avoid ax-13 2372. See cbviung 5042 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypotheses
Ref Expression
cbviun.1 𝑦𝐵
cbviun.2 𝑥𝐶
cbviun.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviun 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbviun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5 𝑦𝐵
21nfcri 2891 . . . 4 𝑦 𝑧𝐵
3 cbviun.2 . . . . 5 𝑥𝐶
43nfcri 2891 . . . 4 𝑥 𝑧𝐶
5 cbviun.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2820 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrexw 3305 . . 3 (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝐴 𝑧𝐶)
87abbii 2803 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
9 df-iun 5000 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
10 df-iun 5000 . 2 𝑦𝐴 𝐶 = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
118, 9, 103eqtr4i 2771 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {cab 2710  wnfc 2884  wrex 3071   ciun 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-iun 5000
This theorem is referenced by:  cbviunv  5044  disjxiun  5146  funiunfvf  7248  mpomptsx  8050  dmmpossx  8052  fmpox  8053  ovmptss  8079  iunfi  9340  fsum2dlem  15716  fsumcom2  15720  fsumiun  15767  fprod2dlem  15924  fprodcom2  15928  gsumcom2  19843  fiuncmp  22908  ovolfiniun  25018  ovoliunlem3  25021  ovoliun  25022  finiunmbl  25061  volfiniun  25064  iunmbl  25070  limciun  25411  iuneqfzuzlem  44092  fsumiunss  44339  sge0iunmpt  45182  meaiunincf  45247  meaiuninc3  45249  smfliminf  45595  dmmpossx2  47060
  Copyright terms: Public domain W3C validator