MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviun Structured version   Visualization version   GIF version

Theorem cbviun 4985
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) Add disjoint variable condition to avoid ax-13 2374. See cbviung 4987 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
cbviun.1 𝑦𝐵
cbviun.2 𝑥𝐶
cbviun.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviun 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbviun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5 𝑦𝐵
21nfcri 2887 . . . 4 𝑦 𝑧𝐵
3 cbviun.2 . . . . 5 𝑥𝐶
43nfcri 2887 . . . 4 𝑥 𝑧𝐶
5 cbviun.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2819 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrexw 3276 . . 3 (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝐴 𝑧𝐶)
87abbii 2800 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
9 df-iun 4943 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
10 df-iun 4943 . 2 𝑦𝐴 𝐶 = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
118, 9, 103eqtr4i 2766 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {cab 2711  wnfc 2880  wrex 3057   ciun 4941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-iun 4943
This theorem is referenced by:  disjxiun  5090  funiunfvf  7189  mpomptsx  8002  dmmpossx  8004  fmpox  8005  ovmptss  8029  iunfi  9234  fsum2dlem  15679  fsumcom2  15683  fsumiun  15730  fprod2dlem  15889  fprodcom2  15893  gsumcom2  19889  fiuncmp  23320  ovolfiniun  25430  ovoliunlem3  25433  ovoliun  25434  finiunmbl  25473  volfiniun  25476  iunmbl  25482  limciun  25823  iunxpssiun1  32550  iuneqfzuzlem  45457  fsumiunss  45699  sge0iunmpt  46540  meaiunincf  46605  meaiuninc3  46607  smfliminf  46953  dmmpossx2  48461
  Copyright terms: Public domain W3C validator