MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviun Structured version   Visualization version   GIF version

Theorem cbviun 5012
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) Add disjoint variable condition to avoid ax-13 2376. See cbviung 5014 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
cbviun.1 𝑦𝐵
cbviun.2 𝑥𝐶
cbviun.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviun 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbviun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5 𝑦𝐵
21nfcri 2890 . . . 4 𝑦 𝑧𝐵
3 cbviun.2 . . . . 5 𝑥𝐶
43nfcri 2890 . . . 4 𝑥 𝑧𝐶
5 cbviun.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2820 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrexw 3287 . . 3 (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝐴 𝑧𝐶)
87abbii 2802 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
9 df-iun 4969 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
10 df-iun 4969 . 2 𝑦𝐴 𝐶 = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
118, 9, 103eqtr4i 2768 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {cab 2713  wnfc 2883  wrex 3060   ciun 4967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-iun 4969
This theorem is referenced by:  disjxiun  5116  funiunfvf  7241  mpomptsx  8063  dmmpossx  8065  fmpox  8066  ovmptss  8092  iunfi  9355  fsum2dlem  15786  fsumcom2  15790  fsumiun  15837  fprod2dlem  15996  fprodcom2  16000  gsumcom2  19956  fiuncmp  23342  ovolfiniun  25454  ovoliunlem3  25457  ovoliun  25458  finiunmbl  25497  volfiniun  25500  iunmbl  25506  limciun  25847  iunxpssiun1  32549  iuneqfzuzlem  45361  fsumiunss  45604  sge0iunmpt  46447  meaiunincf  46512  meaiuninc3  46514  smfliminf  46860  dmmpossx2  48312
  Copyright terms: Public domain W3C validator