MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviun Structured version   Visualization version   GIF version

Theorem cbviun 5003
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) Add disjoint variable condition to avoid ax-13 2371. See cbviung 5005 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
cbviun.1 𝑦𝐵
cbviun.2 𝑥𝐶
cbviun.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviun 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbviun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5 𝑦𝐵
21nfcri 2884 . . . 4 𝑦 𝑧𝐵
3 cbviun.2 . . . . 5 𝑥𝐶
43nfcri 2884 . . . 4 𝑥 𝑧𝐶
5 cbviun.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2815 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrexw 3283 . . 3 (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝐴 𝑧𝐶)
87abbii 2797 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
9 df-iun 4960 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
10 df-iun 4960 . 2 𝑦𝐴 𝐶 = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
118, 9, 103eqtr4i 2763 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2708  wnfc 2877  wrex 3054   ciun 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-iun 4960
This theorem is referenced by:  disjxiun  5107  funiunfvf  7226  mpomptsx  8046  dmmpossx  8048  fmpox  8049  ovmptss  8075  iunfi  9301  fsum2dlem  15743  fsumcom2  15747  fsumiun  15794  fprod2dlem  15953  fprodcom2  15957  gsumcom2  19912  fiuncmp  23298  ovolfiniun  25409  ovoliunlem3  25412  ovoliun  25413  finiunmbl  25452  volfiniun  25455  iunmbl  25461  limciun  25802  iunxpssiun1  32504  iuneqfzuzlem  45337  fsumiunss  45580  sge0iunmpt  46423  meaiunincf  46488  meaiuninc3  46490  smfliminf  46836  dmmpossx2  48329
  Copyright terms: Public domain W3C validator