| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviun | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) Add disjoint variable condition to avoid ax-13 2376. See cbviung 5014 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbviun.1 | ⊢ Ⅎ𝑦𝐵 |
| cbviun.2 | ⊢ Ⅎ𝑥𝐶 |
| cbviun.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviun.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 2 | 1 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 3 | cbviun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
| 5 | cbviun.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 6 | 5 | eleq2d 2820 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 7 | 2, 4, 6 | cbvrexw 3287 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 8 | 7 | abbii 2802 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 9 | df-iun 4969 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 10 | df-iun 4969 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 11 | 8, 9, 10 | 3eqtr4i 2768 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2713 Ⅎwnfc 2883 ∃wrex 3060 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-iun 4969 |
| This theorem is referenced by: disjxiun 5116 funiunfvf 7241 mpomptsx 8063 dmmpossx 8065 fmpox 8066 ovmptss 8092 iunfi 9355 fsum2dlem 15786 fsumcom2 15790 fsumiun 15837 fprod2dlem 15996 fprodcom2 16000 gsumcom2 19956 fiuncmp 23342 ovolfiniun 25454 ovoliunlem3 25457 ovoliun 25458 finiunmbl 25497 volfiniun 25500 iunmbl 25506 limciun 25847 iunxpssiun1 32549 iuneqfzuzlem 45361 fsumiunss 45604 sge0iunmpt 46447 meaiunincf 46512 meaiuninc3 46514 smfliminf 46860 dmmpossx2 48312 |
| Copyright terms: Public domain | W3C validator |