![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviun | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) Add disjoint variable condition to avoid ax-13 2372. See cbviung 5042 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
cbviun.1 | ⊢ Ⅎ𝑦𝐵 |
cbviun.2 | ⊢ Ⅎ𝑥𝐶 |
cbviun.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviun.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
2 | 1 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
3 | cbviun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
5 | cbviun.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
6 | 5 | eleq2d 2820 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
7 | 2, 4, 6 | cbvrexw 3305 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
8 | 7 | abbii 2803 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
9 | df-iun 5000 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
10 | df-iun 5000 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
11 | 8, 9, 10 | 3eqtr4i 2771 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {cab 2710 Ⅎwnfc 2884 ∃wrex 3071 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-iun 5000 |
This theorem is referenced by: cbviunv 5044 disjxiun 5146 funiunfvf 7248 mpomptsx 8050 dmmpossx 8052 fmpox 8053 ovmptss 8079 iunfi 9340 fsum2dlem 15716 fsumcom2 15720 fsumiun 15767 fprod2dlem 15924 fprodcom2 15928 gsumcom2 19843 fiuncmp 22908 ovolfiniun 25018 ovoliunlem3 25021 ovoliun 25022 finiunmbl 25061 volfiniun 25064 iunmbl 25070 limciun 25411 iuneqfzuzlem 44092 fsumiunss 44339 sge0iunmpt 45182 meaiunincf 45247 meaiuninc3 45249 smfliminf 45595 dmmpossx2 47060 |
Copyright terms: Public domain | W3C validator |