MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem3a Structured version   Visualization version   GIF version

Theorem tfrlem3a 8418
Description: Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.)
Hypotheses
Ref Expression
tfrlem3.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem3.2 𝐺 ∈ V
Assertion
Ref Expression
tfrlem3a (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem tfrlem3a
StepHypRef Expression
1 tfrlem3.2 . 2 𝐺 ∈ V
2 fneq12 6663 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (𝑓 Fn 𝑥𝐺 Fn 𝑧))
3 simpll 766 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐺)
4 simpr 484 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
53, 4fveq12d 6912 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
63, 4reseq12d 5997 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
76fveq2d 6909 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝐺𝑤)))
85, 7eqeq12d 2752 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
9 simplr 768 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
108, 9cbvraldva2 3347 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
112, 10anbi12d 632 . . 3 ((𝑓 = 𝐺𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
1211cbvrexdva 3239 . 2 (𝑓 = 𝐺 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
13 tfrlem3.1 . 2 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
141, 12, 13elab2 3681 1 (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2713  wral 3060  wrex 3069  Vcvv 3479  cres 5686  Oncon0 6383   Fn wfn 6555  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-res 5696  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568
This theorem is referenced by:  tfrlem3  8419  tfrlem5  8421  tfrlem9a  8427
  Copyright terms: Public domain W3C validator