MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem3a Structured version   Visualization version   GIF version

Theorem tfrlem3a 8324
Description: Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.)
Hypotheses
Ref Expression
tfrlem3.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem3.2 𝐺 ∈ V
Assertion
Ref Expression
tfrlem3a (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem tfrlem3a
StepHypRef Expression
1 tfrlem3.2 . 2 𝐺 ∈ V
2 fneq12 6599 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (𝑓 Fn 𝑥𝐺 Fn 𝑧))
3 simpll 766 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐺)
4 simpr 486 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
53, 4fveq12d 6850 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
63, 4reseq12d 5939 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
76fveq2d 6847 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝐺𝑤)))
85, 7eqeq12d 2749 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
9 simplr 768 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
108, 9cbvraldva2 3322 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
112, 10anbi12d 632 . . 3 ((𝑓 = 𝐺𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
1211cbvrexdva 3326 . 2 (𝑓 = 𝐺 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
13 tfrlem3.1 . 2 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
141, 12, 13elab2 3635 1 (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  wral 3061  wrex 3070  Vcvv 3444  cres 5636  Oncon0 6318   Fn wfn 6492  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-res 5646  df-iota 6449  df-fun 6499  df-fn 6500  df-fv 6505
This theorem is referenced by:  tfrlem3  8325  tfrlem5  8327  tfrlem9a  8333
  Copyright terms: Public domain W3C validator