![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem3a | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
Ref | Expression |
---|---|
tfrlem3.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlem3.2 | ⊢ 𝐺 ∈ V |
Ref | Expression |
---|---|
tfrlem3a | ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem3.2 | . 2 ⊢ 𝐺 ∈ V | |
2 | fneq12 6645 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → (𝑓 Fn 𝑥 ↔ 𝐺 Fn 𝑧)) | |
3 | simpll 765 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐺) | |
4 | simpr 485 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
5 | 3, 4 | fveq12d 6898 | . . . . . 6 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓‘𝑦) = (𝐺‘𝑤)) |
6 | 3, 4 | reseq12d 5982 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓 ↾ 𝑦) = (𝐺 ↾ 𝑤)) |
7 | 6 | fveq2d 6895 | . . . . . 6 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐹‘(𝑓 ↾ 𝑦)) = (𝐹‘(𝐺 ↾ 𝑤))) |
8 | 5, 7 | eqeq12d 2748 | . . . . 5 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
9 | simplr 767 | . . . . 5 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
10 | 8, 9 | cbvraldva2 3344 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
11 | 2, 10 | anbi12d 631 | . . 3 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) |
12 | 11 | cbvrexdva 3237 | . 2 ⊢ (𝑓 = 𝐺 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) |
13 | tfrlem3.1 | . 2 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
14 | 1, 12, 13 | elab2 3672 | 1 ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2709 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ↾ cres 5678 Oncon0 6364 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: tfrlem3 8377 tfrlem5 8379 tfrlem9a 8385 |
Copyright terms: Public domain | W3C validator |