| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem3a | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
| Ref | Expression |
|---|---|
| tfrlem3.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| tfrlem3.2 | ⊢ 𝐺 ∈ V |
| Ref | Expression |
|---|---|
| tfrlem3a | ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem3.2 | . 2 ⊢ 𝐺 ∈ V | |
| 2 | fneq12 6577 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → (𝑓 Fn 𝑥 ↔ 𝐺 Fn 𝑧)) | |
| 3 | simpll 766 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐺) | |
| 4 | simpr 484 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
| 5 | 3, 4 | fveq12d 6829 | . . . . . 6 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓‘𝑦) = (𝐺‘𝑤)) |
| 6 | 3, 4 | reseq12d 5928 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓 ↾ 𝑦) = (𝐺 ↾ 𝑤)) |
| 7 | 6 | fveq2d 6826 | . . . . . 6 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐹‘(𝑓 ↾ 𝑦)) = (𝐹‘(𝐺 ↾ 𝑤))) |
| 8 | 5, 7 | eqeq12d 2747 | . . . . 5 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
| 10 | 8, 9 | cbvraldva2 3314 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| 11 | 2, 10 | anbi12d 632 | . . 3 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) |
| 12 | 11 | cbvrexdva 3213 | . 2 ⊢ (𝑓 = 𝐺 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) |
| 13 | tfrlem3.1 | . 2 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 14 | 1, 12, 13 | elab2 3633 | 1 ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ↾ cres 5616 Oncon0 6306 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: tfrlem3 8297 tfrlem5 8299 tfrlem9a 8305 |
| Copyright terms: Public domain | W3C validator |