MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem3a Structured version   Visualization version   GIF version

Theorem tfrlem3a 8208
Description: Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.)
Hypotheses
Ref Expression
tfrlem3.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem3.2 𝐺 ∈ V
Assertion
Ref Expression
tfrlem3a (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem tfrlem3a
StepHypRef Expression
1 tfrlem3.2 . 2 𝐺 ∈ V
2 fneq12 6529 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (𝑓 Fn 𝑥𝐺 Fn 𝑧))
3 simpll 764 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐺)
4 simpr 485 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
53, 4fveq12d 6781 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
63, 4reseq12d 5892 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
76fveq2d 6778 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝐺𝑤)))
85, 7eqeq12d 2754 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
9 simplr 766 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
108, 9cbvraldva2 3392 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
112, 10anbi12d 631 . . 3 ((𝑓 = 𝐺𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
1211cbvrexdva 3395 . 2 (𝑓 = 𝐺 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
13 tfrlem3.1 . 2 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
141, 12, 13elab2 3613 1 (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3432  cres 5591  Oncon0 6266   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  tfrlem3  8209  tfrlem5  8211  tfrlem9a  8217
  Copyright terms: Public domain W3C validator