| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem3a | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
| Ref | Expression |
|---|---|
| tfrlem3.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| tfrlem3.2 | ⊢ 𝐺 ∈ V |
| Ref | Expression |
|---|---|
| tfrlem3a | ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem3.2 | . 2 ⊢ 𝐺 ∈ V | |
| 2 | fneq12 6639 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → (𝑓 Fn 𝑥 ↔ 𝐺 Fn 𝑧)) | |
| 3 | simpll 766 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐺) | |
| 4 | simpr 484 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
| 5 | 3, 4 | fveq12d 6888 | . . . . . 6 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓‘𝑦) = (𝐺‘𝑤)) |
| 6 | 3, 4 | reseq12d 5972 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓 ↾ 𝑦) = (𝐺 ↾ 𝑤)) |
| 7 | 6 | fveq2d 6885 | . . . . . 6 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐹‘(𝑓 ↾ 𝑦)) = (𝐹‘(𝐺 ↾ 𝑤))) |
| 8 | 5, 7 | eqeq12d 2752 | . . . . 5 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
| 10 | 8, 9 | cbvraldva2 3331 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| 11 | 2, 10 | anbi12d 632 | . . 3 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) |
| 12 | 11 | cbvrexdva 3227 | . 2 ⊢ (𝑓 = 𝐺 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) |
| 13 | tfrlem3.1 | . 2 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 14 | 1, 12, 13 | elab2 3666 | 1 ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ↾ cres 5661 Oncon0 6357 Fn wfn 6531 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: tfrlem3 8397 tfrlem5 8399 tfrlem9a 8405 |
| Copyright terms: Public domain | W3C validator |