Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvreud Structured version   Visualization version   GIF version

Theorem cbvreud 35544
Description: Deduction used to change bound variables in a restricted existential uniqueness quantifier. (Contributed by ML, 27-Mar-2021.)
Hypotheses
Ref Expression
cbvreud.1 𝑥𝜑
cbvreud.2 𝑦𝜑
cbvreud.3 (𝜑 → Ⅎ𝑦𝜓)
cbvreud.4 (𝜑 → Ⅎ𝑥𝜒)
cbvreud.5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbvreud (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑦𝐴 𝜒))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem cbvreud
StepHypRef Expression
1 cbvreud.1 . . 3 𝑥𝜑
2 cbvreud.2 . . 3 𝑦𝜑
3 nfvd 1918 . . . 4 (𝜑 → Ⅎ𝑦 𝑥𝐴)
4 cbvreud.3 . . . 4 (𝜑 → Ⅎ𝑦𝜓)
53, 4nfand 1900 . . 3 (𝜑 → Ⅎ𝑦(𝑥𝐴𝜓))
6 nfvd 1918 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 cbvreud.4 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
86, 7nfand 1900 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜒))
9 eleq1 2826 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
109adantl 482 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
11 cbvreud.5 . . . . . 6 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
1211imp 407 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
1310, 12anbi12d 631 . . . 4 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴𝜓) ↔ (𝑦𝐴𝜒)))
1413ex 413 . . 3 (𝜑 → (𝑥 = 𝑦 → ((𝑥𝐴𝜓) ↔ (𝑦𝐴𝜒))))
151, 2, 5, 8, 14cbveud 35543 . 2 (𝜑 → (∃!𝑥(𝑥𝐴𝜓) ↔ ∃!𝑦(𝑦𝐴𝜒)))
16 df-reu 3072 . 2 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥(𝑥𝐴𝜓))
17 df-reu 3072 . 2 (∃!𝑦𝐴 𝜒 ↔ ∃!𝑦(𝑦𝐴𝜒))
1815, 16, 173bitr4g 314 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑦𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  ∃!weu 2568  ∃!wreu 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569  df-cleq 2730  df-clel 2816  df-reu 3072
This theorem is referenced by:  fvineqsneu  35582
  Copyright terms: Public domain W3C validator