| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvreud | Structured version Visualization version GIF version | ||
| Description: Deduction used to change bound variables in a restricted existential uniqueness quantifier. (Contributed by ML, 27-Mar-2021.) |
| Ref | Expression |
|---|---|
| cbvreud.1 | ⊢ Ⅎ𝑥𝜑 |
| cbvreud.2 | ⊢ Ⅎ𝑦𝜑 |
| cbvreud.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbvreud.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| cbvreud.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbvreud | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑦 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvreud.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | cbvreud.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfvd 1915 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦 𝑥 ∈ 𝐴) | |
| 4 | cbvreud.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 5 | 3, 4 | nfand 1897 | . . 3 ⊢ (𝜑 → Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 6 | nfvd 1915 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 7 | cbvreud.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 8 | 6, 7 | nfand 1897 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜒)) |
| 9 | eleq1 2829 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 11 | cbvreud.5 | . . . . . 6 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 12 | 11 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| 13 | 10, 12 | anbi12d 632 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑦 ∈ 𝐴 ∧ 𝜒))) |
| 14 | 13 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑦 ∈ 𝐴 ∧ 𝜒)))) |
| 15 | 1, 2, 5, 8, 14 | cbveud 37373 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜒))) |
| 16 | df-reu 3381 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 17 | df-reu 3381 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜒 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜒)) | |
| 18 | 15, 16, 17 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑦 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∃!weu 2568 ∃!wreu 3378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 df-cleq 2729 df-clel 2816 df-reu 3381 |
| This theorem is referenced by: fvineqsneu 37412 |
| Copyright terms: Public domain | W3C validator |