Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difunieq Structured version   Visualization version   GIF version

Theorem difunieq 37375
Description: The difference of unions is a subset of the union of the difference. (Contributed by ML, 29-Mar-2021.)
Assertion
Ref Expression
difunieq ( 𝐴 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem difunieq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4910 . . . 4 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
2 eluni 4910 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
32notbii 320 . . . 4 𝑥 𝐵 ↔ ¬ ∃𝑦(𝑥𝑦𝑦𝐵))
4 alinexa 1843 . . . . . 6 (∀𝑦(𝑥𝑦 → ¬ 𝑦𝐵) ↔ ¬ ∃𝑦(𝑥𝑦𝑦𝐵))
5 nfa1 2151 . . . . . . 7 𝑦𝑦(𝑥𝑦 → ¬ 𝑦𝐵)
6 sp 2183 . . . . . . . . . 10 (∀𝑦(𝑥𝑦 → ¬ 𝑦𝐵) → (𝑥𝑦 → ¬ 𝑦𝐵))
76adantrd 491 . . . . . . . . 9 (∀𝑦(𝑥𝑦 → ¬ 𝑦𝐵) → ((𝑥𝑦𝑦𝐴) → ¬ 𝑦𝐵))
87ancld 550 . . . . . . . 8 (∀𝑦(𝑥𝑦 → ¬ 𝑦𝐵) → ((𝑥𝑦𝑦𝐴) → ((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑦𝐵)))
9 anass 468 . . . . . . . 8 (((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑦𝐵) ↔ (𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
108, 9imbitrdi 251 . . . . . . 7 (∀𝑦(𝑥𝑦 → ¬ 𝑦𝐵) → ((𝑥𝑦𝑦𝐴) → (𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦𝐵))))
115, 10eximd 2216 . . . . . 6 (∀𝑦(𝑥𝑦 → ¬ 𝑦𝐵) → (∃𝑦(𝑥𝑦𝑦𝐴) → ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦𝐵))))
124, 11sylbir 235 . . . . 5 (¬ ∃𝑦(𝑥𝑦𝑦𝐵) → (∃𝑦(𝑥𝑦𝑦𝐴) → ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦𝐵))))
1312impcom 407 . . . 4 ((∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ ∃𝑦(𝑥𝑦𝑦𝐵)) → ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
141, 3, 13syl2anb 598 . . 3 ((𝑥 𝐴 ∧ ¬ 𝑥 𝐵) → ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
15 eldif 3961 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴 ∧ ¬ 𝑥 𝐵))
16 eluni 4910 . . . 4 (𝑥 (𝐴𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)))
17 eldif 3961 . . . . . 6 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
1817anbi2i 623 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
1918exbii 1848 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
2016, 19bitri 275 . . 3 (𝑥 (𝐴𝐵) ↔ ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦𝐵)))
2114, 15, 203imtr4i 292 . 2 (𝑥 ∈ ( 𝐴 𝐵) → 𝑥 (𝐴𝐵))
2221ssriv 3987 1 ( 𝐴 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538  wex 1779  wcel 2108  cdif 3948  wss 3951   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-dif 3954  df-ss 3968  df-uni 4908
This theorem is referenced by:  inunissunidif  37376
  Copyright terms: Public domain W3C validator