MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex2g Structured version   Visualization version   GIF version

Theorem copsex2g 5468
Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.) Use a similar proof to copsex4g 5470 to reduce axiom usage. (Revised by SN, 1-Sep-2024.)
Hypothesis
Ref Expression
copsex2g.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
copsex2g ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝜓   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem copsex2g
StepHypRef Expression
1 eqcom 2742 . . . . 5 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2 vex 3463 . . . . . 6 𝑥 ∈ V
3 vex 3463 . . . . . 6 𝑦 ∈ V
42, 3opth 5451 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
51, 4bitri 275 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
65anbi1i 624 . . 3 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑))
762exbii 1849 . 2 (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑))
8 id 22 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝐴𝑦 = 𝐵))
9 copsex2g.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
108, 9cgsex2g 3506 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜓))
117, 10bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  cop 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608
This theorem is referenced by:  opelopabga  5508  ov6g  7571  ltresr  11154
  Copyright terms: Public domain W3C validator