MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4fvwrd4 Structured version   Visualization version   GIF version

Theorem 4fvwrd4 13022
Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
Assertion
Ref Expression
4fvwrd4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Distinct variable groups:   𝑃,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝐿(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem 4fvwrd4
StepHypRef Expression
1 simpr 488 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 𝑃:(0...𝐿)⟶𝑉)
2 0nn0 11900 . . . . . . . . 9 0 ∈ ℕ0
3 elnn0uz 12271 . . . . . . . . 9 (0 ∈ ℕ0 ↔ 0 ∈ (ℤ‘0))
42, 3mpbi 233 . . . . . . . 8 0 ∈ (ℤ‘0)
5 3nn0 11903 . . . . . . . . . . 11 3 ∈ ℕ0
6 elnn0uz 12271 . . . . . . . . . . 11 (3 ∈ ℕ0 ↔ 3 ∈ (ℤ‘0))
75, 6mpbi 233 . . . . . . . . . 10 3 ∈ (ℤ‘0)
8 uzss 12253 . . . . . . . . . 10 (3 ∈ (ℤ‘0) → (ℤ‘3) ⊆ (ℤ‘0))
97, 8ax-mp 5 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘0)
109sseli 3911 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘0))
11 eluzfz 12897 . . . . . . . 8 ((0 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘0)) → 0 ∈ (0...𝐿))
124, 10, 11sylancr 590 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 0 ∈ (0...𝐿))
1312adantr 484 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 0 ∈ (0...𝐿))
141, 13ffvelrnd 6829 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘0) ∈ 𝑉)
15 clel5 3605 . . . . 5 ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎𝑉 (𝑃‘0) = 𝑎)
1614, 15sylib 221 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉 (𝑃‘0) = 𝑎)
17 1eluzge0 12280 . . . . . . . 8 1 ∈ (ℤ‘0)
18 1z 12000 . . . . . . . . . . 11 1 ∈ ℤ
19 3z 12003 . . . . . . . . . . 11 3 ∈ ℤ
20 1le3 11837 . . . . . . . . . . 11 1 ≤ 3
21 eluz2 12237 . . . . . . . . . . 11 (3 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 1 ≤ 3))
2218, 19, 20, 21mpbir3an 1338 . . . . . . . . . 10 3 ∈ (ℤ‘1)
23 uzss 12253 . . . . . . . . . 10 (3 ∈ (ℤ‘1) → (ℤ‘3) ⊆ (ℤ‘1))
2422, 23ax-mp 5 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘1)
2524sseli 3911 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘1))
26 eluzfz 12897 . . . . . . . 8 ((1 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘1)) → 1 ∈ (0...𝐿))
2717, 25, 26sylancr 590 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 1 ∈ (0...𝐿))
2827adantr 484 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 1 ∈ (0...𝐿))
291, 28ffvelrnd 6829 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
30 clel5 3605 . . . . 5 ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3129, 30sylib 221 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3216, 31jca 515 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
33 2eluzge0 12281 . . . . . . 7 2 ∈ (ℤ‘0)
34 uzuzle23 12277 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘2))
35 eluzfz 12897 . . . . . . 7 ((2 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘2)) → 2 ∈ (0...𝐿))
3633, 34, 35sylancr 590 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 2 ∈ (0...𝐿))
3736adantr 484 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 2 ∈ (0...𝐿))
381, 37ffvelrnd 6829 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
39 clel5 3605 . . . 4 ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐𝑉 (𝑃‘2) = 𝑐)
4038, 39sylib 221 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑐𝑉 (𝑃‘2) = 𝑐)
41 eluzfz 12897 . . . . . . 7 ((3 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘3)) → 3 ∈ (0...𝐿))
427, 41mpan 689 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 3 ∈ (0...𝐿))
4342adantr 484 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 3 ∈ (0...𝐿))
441, 43ffvelrnd 6829 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘3) ∈ 𝑉)
45 clel5 3605 . . . 4 ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑𝑉 (𝑃‘3) = 𝑑)
4644, 45sylib 221 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑑𝑉 (𝑃‘3) = 𝑑)
4732, 40, 46jca32 519 . 2 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
48 r19.42v 3303 . . . . . 6 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
49 r19.42v 3303 . . . . . . 7 (∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑) ↔ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
5049anbi2i 625 . . . . . 6 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
5148, 50bitri 278 . . . . 5 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
5251rexbii 3210 . . . 4 (∃𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
53522rexbii 3211 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
54 r19.42v 3303 . . . . 5 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
55 r19.41v 3300 . . . . . 6 (∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑) ↔ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
5655anbi2i 625 . . . . 5 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
5754, 56bitri 278 . . . 4 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
58572rexbii 3211 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
59 r19.41v 3300 . . . . . 6 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
60 r19.42v 3303 . . . . . . 7 (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ↔ ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
6160anbi1i 626 . . . . . 6 ((∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6259, 61bitri 278 . . . . 5 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6362rexbii 3210 . . . 4 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
64 r19.41v 3300 . . . 4 (∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
65 r19.41v 3300 . . . . 5 (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ↔ (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
6665anbi1i 626 . . . 4 ((∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6763, 64, 663bitri 300 . . 3 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6853, 58, 673bitri 300 . 2 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6947, 68sylibr 237 1 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107  wss 3881   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527  cle 10665  2c2 11680  3c3 11681  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator