MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4fvwrd4 Structured version   Visualization version   GIF version

Theorem 4fvwrd4 13585
Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
Assertion
Ref Expression
4fvwrd4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Distinct variable groups:   𝑃,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝐿(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem 4fvwrd4
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 𝑃:(0...𝐿)⟶𝑉)
2 0nn0 12433 . . . . . . . . 9 0 ∈ ℕ0
3 elnn0uz 12814 . . . . . . . . 9 (0 ∈ ℕ0 ↔ 0 ∈ (ℤ‘0))
42, 3mpbi 230 . . . . . . . 8 0 ∈ (ℤ‘0)
5 3nn0 12436 . . . . . . . . . . 11 3 ∈ ℕ0
6 elnn0uz 12814 . . . . . . . . . . 11 (3 ∈ ℕ0 ↔ 3 ∈ (ℤ‘0))
75, 6mpbi 230 . . . . . . . . . 10 3 ∈ (ℤ‘0)
8 uzss 12792 . . . . . . . . . 10 (3 ∈ (ℤ‘0) → (ℤ‘3) ⊆ (ℤ‘0))
97, 8ax-mp 5 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘0)
109sseli 3939 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘0))
11 eluzfz 13456 . . . . . . . 8 ((0 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘0)) → 0 ∈ (0...𝐿))
124, 10, 11sylancr 587 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 0 ∈ (0...𝐿))
1312adantr 480 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 0 ∈ (0...𝐿))
141, 13ffvelcdmd 7039 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘0) ∈ 𝑉)
15 clel5 3628 . . . . 5 ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎𝑉 (𝑃‘0) = 𝑎)
1614, 15sylib 218 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉 (𝑃‘0) = 𝑎)
17 1eluzge0 12815 . . . . . . . 8 1 ∈ (ℤ‘0)
18 1z 12539 . . . . . . . . . . 11 1 ∈ ℤ
19 3z 12542 . . . . . . . . . . 11 3 ∈ ℤ
20 1le3 12369 . . . . . . . . . . 11 1 ≤ 3
21 eluz2 12775 . . . . . . . . . . 11 (3 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 1 ≤ 3))
2218, 19, 20, 21mpbir3an 1342 . . . . . . . . . 10 3 ∈ (ℤ‘1)
23 uzss 12792 . . . . . . . . . 10 (3 ∈ (ℤ‘1) → (ℤ‘3) ⊆ (ℤ‘1))
2422, 23ax-mp 5 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘1)
2524sseli 3939 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘1))
26 eluzfz 13456 . . . . . . . 8 ((1 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘1)) → 1 ∈ (0...𝐿))
2717, 25, 26sylancr 587 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 1 ∈ (0...𝐿))
2827adantr 480 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 1 ∈ (0...𝐿))
291, 28ffvelcdmd 7039 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
30 clel5 3628 . . . . 5 ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3129, 30sylib 218 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3216, 31jca 511 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
33 2eluzge0 12816 . . . . . . 7 2 ∈ (ℤ‘0)
34 uzuzle23 12819 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘2))
35 eluzfz 13456 . . . . . . 7 ((2 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘2)) → 2 ∈ (0...𝐿))
3633, 34, 35sylancr 587 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 2 ∈ (0...𝐿))
3736adantr 480 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 2 ∈ (0...𝐿))
381, 37ffvelcdmd 7039 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
39 clel5 3628 . . . 4 ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐𝑉 (𝑃‘2) = 𝑐)
4038, 39sylib 218 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑐𝑉 (𝑃‘2) = 𝑐)
41 eluzfz 13456 . . . . . . 7 ((3 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘3)) → 3 ∈ (0...𝐿))
427, 41mpan 690 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 3 ∈ (0...𝐿))
4342adantr 480 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 3 ∈ (0...𝐿))
441, 43ffvelcdmd 7039 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘3) ∈ 𝑉)
45 clel5 3628 . . . 4 ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑𝑉 (𝑃‘3) = 𝑑)
4644, 45sylib 218 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑑𝑉 (𝑃‘3) = 𝑑)
4732, 40, 46jca32 515 . 2 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
48 r19.42v 3167 . . . . . 6 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
49 r19.42v 3167 . . . . . . 7 (∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑) ↔ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
5049anbi2i 623 . . . . . 6 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
5148, 50bitri 275 . . . . 5 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
5251rexbii 3076 . . . 4 (∃𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
53522rexbii 3109 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
54 r19.42v 3167 . . . . 5 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
55 r19.41v 3165 . . . . . 6 (∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑) ↔ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
5655anbi2i 623 . . . . 5 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
5754, 56bitri 275 . . . 4 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
58572rexbii 3109 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
59 r19.41v 3165 . . . . . 6 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
60 r19.42v 3167 . . . . . . 7 (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ↔ ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
6160anbi1i 624 . . . . . 6 ((∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6259, 61bitri 275 . . . . 5 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6362rexbii 3076 . . . 4 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
64 r19.41v 3165 . . . 4 (∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
65 r19.41v 3165 . . . . 5 (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ↔ (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
6665anbi1i 624 . . . 4 ((∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6763, 64, 663bitri 297 . . 3 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6853, 58, 673bitri 297 . 2 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6947, 68sylibr 234 1 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3911   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  cle 11185  2c2 12217  3c3 12218  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator