| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunid | Structured version Visualization version GIF version | ||
| Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) (Proof shortened by SN, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| iunid | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 4960 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} | |
| 2 | clel5 3634 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) | |
| 3 | velsn 4608 | . . . . 5 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
| 4 | 3 | rexbii 3077 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) |
| 5 | 2, 4 | bitr4i 278 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}) |
| 6 | 5 | eqabi 2864 | . 2 ⊢ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} |
| 7 | 1, 6 | eqtr4i 2756 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 {csn 4592 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-sn 4593 df-iun 4960 |
| This theorem is referenced by: iunxpconst 5714 fvn0ssdmfun 7049 abnexg 7735 xpexgALT 7963 uniqs 8750 rankcf 10737 dprd2da 19981 t1ficld 23221 discmp 23292 xkoinjcn 23581 metnrmlem2 24756 ovoliunlem1 25410 i1fima 25586 i1fd 25589 itg1addlem5 25608 dmdju 32578 fnpreimac 32602 gsumpart 33004 elrspunidl 33406 sibfof 34338 bnj1415 35035 cvmlift2lem12 35308 poimirlem30 37651 itg2addnclem2 37673 ftc1anclem6 37699 salexct3 46347 salgensscntex 46349 ctvonmbl 46694 vonct 46698 |
| Copyright terms: Public domain | W3C validator |