| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunid | Structured version Visualization version GIF version | ||
| Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) (Proof shortened by SN, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| iunid | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 4953 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} | |
| 2 | clel5 3628 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) | |
| 3 | velsn 4601 | . . . . 5 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
| 4 | 3 | rexbii 3076 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) |
| 5 | 2, 4 | bitr4i 278 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}) |
| 6 | 5 | eqabi 2863 | . 2 ⊢ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} |
| 7 | 1, 6 | eqtr4i 2755 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {csn 4585 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3446 df-sn 4586 df-iun 4953 |
| This theorem is referenced by: iunxpconst 5704 fvn0ssdmfun 7028 abnexg 7712 xpexgALT 7939 uniqs 8724 rankcf 10706 dprd2da 19958 t1ficld 23247 discmp 23318 xkoinjcn 23607 metnrmlem2 24782 ovoliunlem1 25436 i1fima 25612 i1fd 25615 itg1addlem5 25634 dmdju 32621 fnpreimac 32645 gsumpart 33040 elrspunidl 33392 sibfof 34324 bnj1415 35021 cvmlift2lem12 35294 poimirlem30 37637 itg2addnclem2 37659 ftc1anclem6 37685 salexct3 46333 salgensscntex 46335 ctvonmbl 46680 vonct 46684 |
| Copyright terms: Public domain | W3C validator |