| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunid | Structured version Visualization version GIF version | ||
| Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) (Proof shortened by SN, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| iunid | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 4941 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} | |
| 2 | clel5 3615 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) | |
| 3 | velsn 4589 | . . . . 5 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
| 4 | 3 | rexbii 3079 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) |
| 5 | 2, 4 | bitr4i 278 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}) |
| 6 | 5 | eqabi 2866 | . 2 ⊢ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} |
| 7 | 1, 6 | eqtr4i 2757 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {csn 4573 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-sn 4574 df-iun 4941 |
| This theorem is referenced by: iunxpconst 5687 fvn0ssdmfun 7007 abnexg 7689 xpexgALT 7913 uniqs 8698 rankcf 10668 dprd2da 19956 t1ficld 23242 discmp 23313 xkoinjcn 23602 metnrmlem2 24776 ovoliunlem1 25430 i1fima 25606 i1fd 25609 itg1addlem5 25628 dmdju 32629 fnpreimac 32653 gsumpart 33037 elrspunidl 33393 sibfof 34353 bnj1415 35050 cvmlift2lem12 35358 poimirlem30 37700 itg2addnclem2 37722 ftc1anclem6 37748 salexct3 46450 salgensscntex 46452 ctvonmbl 46797 vonct 46801 |
| Copyright terms: Public domain | W3C validator |