| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunid | Structured version Visualization version GIF version | ||
| Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) (Proof shortened by SN, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| iunid | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 4957 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} | |
| 2 | clel5 3631 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) | |
| 3 | velsn 4605 | . . . . 5 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
| 4 | 3 | rexbii 3076 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) |
| 5 | 2, 4 | bitr4i 278 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}) |
| 6 | 5 | eqabi 2863 | . 2 ⊢ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} |
| 7 | 1, 6 | eqtr4i 2755 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {csn 4589 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3449 df-sn 4590 df-iun 4957 |
| This theorem is referenced by: iunxpconst 5711 fvn0ssdmfun 7046 abnexg 7732 xpexgALT 7960 uniqs 8747 rankcf 10730 dprd2da 19974 t1ficld 23214 discmp 23285 xkoinjcn 23574 metnrmlem2 24749 ovoliunlem1 25403 i1fima 25579 i1fd 25582 itg1addlem5 25601 dmdju 32571 fnpreimac 32595 gsumpart 32997 elrspunidl 33399 sibfof 34331 bnj1415 35028 cvmlift2lem12 35301 poimirlem30 37644 itg2addnclem2 37666 ftc1anclem6 37692 salexct3 46340 salgensscntex 46342 ctvonmbl 46687 vonct 46691 |
| Copyright terms: Public domain | W3C validator |