MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunid Structured version   Visualization version   GIF version

Theorem iunid 4990
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
Assertion
Ref Expression
iunid 𝑥𝐴 {𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sn 4562 . . . . 5 {𝑥} = {𝑦𝑦 = 𝑥}
2 equcom 2021 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
32abbii 2808 . . . . 5 {𝑦𝑦 = 𝑥} = {𝑦𝑥 = 𝑦}
41, 3eqtri 2766 . . . 4 {𝑥} = {𝑦𝑥 = 𝑦}
54a1i 11 . . 3 (𝑥𝐴 → {𝑥} = {𝑦𝑥 = 𝑦})
65iuneq2i 4945 . 2 𝑥𝐴 {𝑥} = 𝑥𝐴 {𝑦𝑥 = 𝑦}
7 iunab 4981 . . 3 𝑥𝐴 {𝑦𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
8 risset 3194 . . . 4 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
98abbii 2808 . . 3 {𝑦𝑦𝐴} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
10 abid2 2882 . . 3 {𝑦𝑦𝐴} = 𝐴
117, 9, 103eqtr2i 2772 . 2 𝑥𝐴 {𝑦𝑥 = 𝑦} = 𝐴
126, 11eqtri 2766 1 𝑥𝐴 {𝑥} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  {csn 4561   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-sn 4562  df-iun 4926
This theorem is referenced by:  iunxpconst  5659  fvn0ssdmfun  6952  abnexg  7606  xpexgALT  7824  uniqs  8566  rankcf  10533  dprd2da  19645  t1ficld  22478  discmp  22549  xkoinjcn  22838  metnrmlem2  24023  ovoliunlem1  24666  i1fima  24842  i1fd  24845  itg1addlem5  24865  fnpreimac  31008  gsumpart  31315  elrspunidl  31606  sibfof  32307  bnj1415  33018  cvmlift2lem12  33276  poimirlem30  35807  itg2addnclem2  35829  ftc1anclem6  35855  uniqsALTV  36464  salexct3  43881  salgensscntex  43883  ctvonmbl  44227  vonct  44231
  Copyright terms: Public domain W3C validator