MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunid Structured version   Visualization version   GIF version

Theorem iunid 5007
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) (Proof shortened by SN, 15-Jan-2025.)
Assertion
Ref Expression
iunid 𝑥𝐴 {𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4941 . 2 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝑥}}
2 clel5 3615 . . . 4 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑦 = 𝑥)
3 velsn 4589 . . . . 5 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
43rexbii 3079 . . . 4 (∃𝑥𝐴 𝑦 ∈ {𝑥} ↔ ∃𝑥𝐴 𝑦 = 𝑥)
52, 4bitr4i 278 . . 3 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑦 ∈ {𝑥})
65eqabi 2866 . 2 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝑥}}
71, 6eqtr4i 2757 1 𝑥𝐴 {𝑥} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {csn 4573   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-v 3438  df-sn 4574  df-iun 4941
This theorem is referenced by:  iunxpconst  5687  fvn0ssdmfun  7007  abnexg  7689  xpexgALT  7913  uniqs  8698  rankcf  10668  dprd2da  19956  t1ficld  23242  discmp  23313  xkoinjcn  23602  metnrmlem2  24776  ovoliunlem1  25430  i1fima  25606  i1fd  25609  itg1addlem5  25628  dmdju  32629  fnpreimac  32653  gsumpart  33037  elrspunidl  33393  sibfof  34353  bnj1415  35050  cvmlift2lem12  35358  poimirlem30  37700  itg2addnclem2  37722  ftc1anclem6  37748  salexct3  46450  salgensscntex  46452  ctvonmbl  46797  vonct  46801
  Copyright terms: Public domain W3C validator