MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunid Structured version   Visualization version   GIF version

Theorem iunid 5019
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) (Proof shortened by SN, 15-Jan-2025.)
Assertion
Ref Expression
iunid 𝑥𝐴 {𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4953 . 2 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝑥}}
2 clel5 3628 . . . 4 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑦 = 𝑥)
3 velsn 4601 . . . . 5 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
43rexbii 3076 . . . 4 (∃𝑥𝐴 𝑦 ∈ {𝑥} ↔ ∃𝑥𝐴 𝑦 = 𝑥)
52, 4bitr4i 278 . . 3 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑦 ∈ {𝑥})
65eqabi 2863 . 2 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝑥}}
71, 6eqtr4i 2755 1 𝑥𝐴 {𝑥} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {csn 4585   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3446  df-sn 4586  df-iun 4953
This theorem is referenced by:  iunxpconst  5704  fvn0ssdmfun  7028  abnexg  7712  xpexgALT  7939  uniqs  8724  rankcf  10706  dprd2da  19958  t1ficld  23247  discmp  23318  xkoinjcn  23607  metnrmlem2  24782  ovoliunlem1  25436  i1fima  25612  i1fd  25615  itg1addlem5  25634  dmdju  32621  fnpreimac  32645  gsumpart  33040  elrspunidl  33392  sibfof  34324  bnj1415  35021  cvmlift2lem12  35294  poimirlem30  37637  itg2addnclem2  37659  ftc1anclem6  37685  salexct3  46333  salgensscntex  46335  ctvonmbl  46680  vonct  46684
  Copyright terms: Public domain W3C validator