Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunid | Structured version Visualization version GIF version |
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
iunid | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sn 4562 | . . . . 5 ⊢ {𝑥} = {𝑦 ∣ 𝑦 = 𝑥} | |
2 | equcom 2021 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
3 | 2 | abbii 2808 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = 𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
4 | 1, 3 | eqtri 2766 | . . . 4 ⊢ {𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} = {𝑦 ∣ 𝑥 = 𝑦}) |
6 | 5 | iuneq2i 4945 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} |
7 | iunab 4981 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} | |
8 | risset 3194 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) | |
9 | 8 | abbii 2808 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} |
10 | abid2 2882 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
11 | 7, 9, 10 | 3eqtr2i 2772 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = 𝐴 |
12 | 6, 11 | eqtri 2766 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 {csn 4561 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-sn 4562 df-iun 4926 |
This theorem is referenced by: iunxpconst 5659 fvn0ssdmfun 6952 abnexg 7606 xpexgALT 7824 uniqs 8566 rankcf 10533 dprd2da 19645 t1ficld 22478 discmp 22549 xkoinjcn 22838 metnrmlem2 24023 ovoliunlem1 24666 i1fima 24842 i1fd 24845 itg1addlem5 24865 fnpreimac 31008 gsumpart 31315 elrspunidl 31606 sibfof 32307 bnj1415 33018 cvmlift2lem12 33276 poimirlem30 35807 itg2addnclem2 35829 ftc1anclem6 35855 uniqsALTV 36464 salexct3 43881 salgensscntex 43883 ctvonmbl 44227 vonct 44231 |
Copyright terms: Public domain | W3C validator |