| Step | Hyp | Ref
| Expression |
| 1 | | disjors 5126 |
. . . . . 6
⊢
(Disj 𝑥
∈ (𝐴 ∪ {𝑀})𝐵 ↔ ∀𝑖 ∈ (𝐴 ∪ {𝑀})∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 2 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑖 = 𝑀 → (𝑖 = 𝑗 ↔ 𝑀 = 𝑗)) |
| 3 | | csbeq1 3902 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑀 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑀 / 𝑥⦌𝐵) |
| 4 | 3 | ineq1d 4219 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑀 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵)) |
| 5 | 4 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑖 = 𝑀 → ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 6 | 2, 5 | orbi12d 919 |
. . . . . . . 8
⊢ (𝑖 = 𝑀 → ((𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
| 7 | 6 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑖 = 𝑀 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
| 8 | 7 | ralunsn 4894 |
. . . . . 6
⊢ (𝑀 ∈ 𝑉 → (∀𝑖 ∈ (𝐴 ∪ {𝑀})∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
| 9 | 1, 8 | bitrid 283 |
. . . . 5
⊢ (𝑀 ∈ 𝑉 → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
| 10 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → (𝑖 = 𝑗 ↔ 𝑖 = 𝑀)) |
| 11 | | csbeq1 3902 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑀 → ⦋𝑗 / 𝑥⦌𝐵 = ⦋𝑀 / 𝑥⦌𝐵) |
| 12 | 11 | ineq2d 4220 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑀 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵)) |
| 13 | 12 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 14 | 10, 13 | orbi12d 919 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → ((𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
| 15 | 14 | ralunsn 4894 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)))) |
| 16 | 15 | ralbidv 3178 |
. . . . . 6
⊢ (𝑀 ∈ 𝑉 → (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑖 ∈ 𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)))) |
| 17 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → (𝑀 = 𝑗 ↔ 𝑀 = 𝑀)) |
| 18 | 11 | ineq2d 4220 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑀 → (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵)) |
| 19 | 18 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 20 | 17, 19 | orbi12d 919 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → ((𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (𝑀 = 𝑀 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
| 21 | 20 | ralunsn 4894 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑀 = 𝑀 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)))) |
| 22 | | eqid 2737 |
. . . . . . . . 9
⊢ 𝑀 = 𝑀 |
| 23 | 22 | orci 866 |
. . . . . . . 8
⊢ (𝑀 = 𝑀 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) |
| 24 | 23 | biantru 529 |
. . . . . . 7
⊢
(∀𝑗 ∈
𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑀 = 𝑀 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
| 25 | 21, 24 | bitr4di 289 |
. . . . . 6
⊢ (𝑀 ∈ 𝑉 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
| 26 | 16, 25 | anbi12d 632 |
. . . . 5
⊢ (𝑀 ∈ 𝑉 → ((∀𝑖 ∈ 𝐴 ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) ↔ (∀𝑖 ∈ 𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
| 27 | 9, 26 | bitrd 279 |
. . . 4
⊢ (𝑀 ∈ 𝑉 → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (∀𝑖 ∈ 𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
| 28 | | r19.26 3111 |
. . . . . 6
⊢
(∀𝑖 ∈
𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ↔ (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
| 29 | | disjors 5126 |
. . . . . . 7
⊢
(Disj 𝑥
∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 30 | 29 | anbi1i 624 |
. . . . . 6
⊢
((Disj 𝑥
∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ↔ (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
| 31 | 28, 30 | bitr4i 278 |
. . . . 5
⊢
(∀𝑖 ∈
𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
| 32 | 31 | anbi1i 624 |
. . . 4
⊢
((∀𝑖 ∈
𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) ↔ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
| 33 | 27, 32 | bitrdi 287 |
. . 3
⊢ (𝑀 ∈ 𝑉 → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
| 34 | 33 | adantr 480 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
| 35 | | orcom 871 |
. . . . . . . . 9
⊢
(((⦋𝑖
/ 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ 𝑖 = 𝑀) ↔ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 36 | 35 | ralbii 3093 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝐴 ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ 𝑖 = 𝑀) ↔ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 37 | | r19.30 3120 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
𝐴 ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ 𝑖 = 𝑀) → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑖 ∈ 𝐴 𝑖 = 𝑀)) |
| 38 | | risset 3233 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝐴 ↔ ∃𝑖 ∈ 𝐴 𝑖 = 𝑀) |
| 39 | | biorf 937 |
. . . . . . . . . . . 12
⊢ (¬
∃𝑖 ∈ 𝐴 𝑖 = 𝑀 → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
| 40 | 38, 39 | sylnbi 330 |
. . . . . . . . . . 11
⊢ (¬
𝑀 ∈ 𝐴 → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
| 41 | 40 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
| 42 | | orcom 871 |
. . . . . . . . . 10
⊢
((∃𝑖 ∈
𝐴 𝑖 = 𝑀 ∨ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑖 ∈ 𝐴 𝑖 = 𝑀)) |
| 43 | 41, 42 | bitrdi 287 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑖 ∈ 𝐴 𝑖 = 𝑀))) |
| 44 | 37, 43 | imbitrrid 246 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ 𝑖 = 𝑀) → ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 45 | 36, 44 | biimtrrid 243 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) → ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 46 | | olc 869 |
. . . . . . . 8
⊢
((⦋𝑖 /
𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ → (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 47 | 46 | ralimi 3083 |
. . . . . . 7
⊢
(∀𝑖 ∈
𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ → ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 48 | 45, 47 | impbid1 225 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 49 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝐵 ∩ 𝐶) = ∅ |
| 50 | | nfcsb1v 3923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 |
| 51 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝐶 |
| 52 | 50, 51 | nfin 4224 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) |
| 53 | 52 | nfeq1 2921 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅ |
| 54 | | csbeq1a 3913 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) |
| 55 | 54 | ineq1d 4219 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → (𝐵 ∩ 𝐶) = (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶)) |
| 56 | 55 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑖 → ((𝐵 ∩ 𝐶) = ∅ ↔ (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
| 57 | 49, 53, 56 | cbvralw 3306 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅) |
| 58 | 57 | a1i 11 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
| 59 | | ss0b 4401 |
. . . . . . . . . . 11
⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ⊆ ∅ ↔ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅) |
| 60 | | iunss 5045 |
. . . . . . . . . . 11
⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ⊆ ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ⊆ ∅) |
| 61 | | iunin1 5072 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) |
| 62 | 61 | eqeq1i 2742 |
. . . . . . . . . . 11
⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) |
| 63 | 59, 60, 62 | 3bitr3ri 302 |
. . . . . . . . . 10
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ⊆ ∅) |
| 64 | | ss0b 4401 |
. . . . . . . . . . 11
⊢ ((𝐵 ∩ 𝐶) ⊆ ∅ ↔ (𝐵 ∩ 𝐶) = ∅) |
| 65 | 64 | ralbii 3093 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 (𝐵 ∩ 𝐶) ⊆ ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅) |
| 66 | 63, 65 | bitri 275 |
. . . . . . . . 9
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅) |
| 67 | 66 | a1i 11 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅)) |
| 68 | | nfcvd 2906 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝑉 → Ⅎ𝑥𝐶) |
| 69 | | disjunsn.s |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑀 → 𝐵 = 𝐶) |
| 70 | 68, 69 | csbiegf 3932 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝑉 → ⦋𝑀 / 𝑥⦌𝐵 = 𝐶) |
| 71 | 70 | ineq2d 4220 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝑉 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶)) |
| 72 | 71 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑉 → ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
| 73 | 72 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
| 74 | 58, 67, 73 | 3bitr4d 311 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 75 | 74 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
| 76 | 48, 75 | bitr4d 282 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) |
| 77 | 76 | anbi2d 630 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |
| 78 | | orcom 871 |
. . . . . . . 8
⊢
(((⦋𝑀
/ 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ 𝑀 = 𝑗) ↔ (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 79 | 78 | ralbii 3093 |
. . . . . . 7
⊢
(∀𝑗 ∈
𝐴 ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ 𝑀 = 𝑗) ↔ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 80 | | r19.30 3120 |
. . . . . . . 8
⊢
(∀𝑗 ∈
𝐴 ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ 𝑀 = 𝑗) → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑗 ∈ 𝐴 𝑀 = 𝑗)) |
| 81 | | clel5 3665 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝐴 ↔ ∃𝑗 ∈ 𝐴 𝑀 = 𝑗) |
| 82 | | biorf 937 |
. . . . . . . . . . 11
⊢ (¬
∃𝑗 ∈ 𝐴 𝑀 = 𝑗 → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
| 83 | 81, 82 | sylnbi 330 |
. . . . . . . . . 10
⊢ (¬
𝑀 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
| 84 | 83 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
| 85 | | orcom 871 |
. . . . . . . . 9
⊢
((∃𝑗 ∈
𝐴 𝑀 = 𝑗 ∨ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑗 ∈ 𝐴 𝑀 = 𝑗)) |
| 86 | 84, 85 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑗 ∈ 𝐴 𝑀 = 𝑗))) |
| 87 | 80, 86 | imbitrrid 246 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ 𝑀 = 𝑗) → ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 88 | 79, 87 | biimtrrid 243 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) → ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 89 | | olc 869 |
. . . . . . 7
⊢
((⦋𝑀 /
𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ → (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 90 | 89 | ralimi 3083 |
. . . . . 6
⊢
(∀𝑗 ∈
𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ → ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 91 | 88, 90 | impbid1 225 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 92 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝐵 ∩ 𝐶) = ∅ |
| 93 | | nfcsb1v 3923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑗 / 𝑥⦌𝐵 |
| 94 | 93, 51 | nfin 4224 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) |
| 95 | 94 | nfeq1 2921 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅ |
| 96 | | csbeq1a 3913 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑥⦌𝐵) |
| 97 | 96 | ineq1d 4219 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑗 → (𝐵 ∩ 𝐶) = (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶)) |
| 98 | 97 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑗 → ((𝐵 ∩ 𝐶) = ∅ ↔ (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
| 99 | 92, 95, 98 | cbvralw 3306 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅) |
| 100 | 99 | a1i 11 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
| 101 | | incom 4209 |
. . . . . . . . . 10
⊢
(⦋𝑗 /
𝑥⦌𝐵 ∩ 𝐶) = (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) |
| 102 | 101 | eqeq1i 2742 |
. . . . . . . . 9
⊢
((⦋𝑗 /
𝑥⦌𝐵 ∩ 𝐶) = ∅ ↔ (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) |
| 103 | 102 | ralbii 3093 |
. . . . . . . 8
⊢
(∀𝑗 ∈
𝐴 (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) |
| 104 | 100, 103 | bitrdi 287 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 105 | 70 | ineq1d 4219 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑉 → (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵)) |
| 106 | 105 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 107 | 106 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ ∀𝑗 ∈ 𝐴 (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 108 | 104, 67, 107 | 3bitr4d 311 |
. . . . . 6
⊢ (𝑀 ∈ 𝑉 → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 109 | 108 | adantr 480 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 110 | 91, 109 | bitr4d 282 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) |
| 111 | 77, 110 | anbi12d 632 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) ↔ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |
| 112 | | anass 468 |
. . . 4
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ ((∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |
| 113 | | anidm 564 |
. . . . 5
⊢
(((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) |
| 114 | 113 | anbi2i 623 |
. . . 4
⊢
((Disj 𝑥
∈ 𝐴 𝐵 ∧ ((∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) |
| 115 | 112, 114 | bitri 275 |
. . 3
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) |
| 116 | 111, 115 | bitrdi 287 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |
| 117 | 34, 116 | bitrd 279 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |