Step | Hyp | Ref
| Expression |
1 | | disjors 5011 |
. . . . . 6
⊢
(Disj 𝑥
∈ (𝐴 ∪ {𝑀})𝐵 ↔ ∀𝑖 ∈ (𝐴 ∪ {𝑀})∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
2 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑖 = 𝑀 → (𝑖 = 𝑗 ↔ 𝑀 = 𝑗)) |
3 | | csbeq1 3793 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑀 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑀 / 𝑥⦌𝐵) |
4 | 3 | ineq1d 4102 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑀 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵)) |
5 | 4 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑖 = 𝑀 → ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
6 | 2, 5 | orbi12d 918 |
. . . . . . . 8
⊢ (𝑖 = 𝑀 → ((𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
7 | 6 | ralbidv 3109 |
. . . . . . 7
⊢ (𝑖 = 𝑀 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
8 | 7 | ralunsn 4782 |
. . . . . 6
⊢ (𝑀 ∈ 𝑉 → (∀𝑖 ∈ (𝐴 ∪ {𝑀})∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
9 | 1, 8 | syl5bb 286 |
. . . . 5
⊢ (𝑀 ∈ 𝑉 → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
10 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → (𝑖 = 𝑗 ↔ 𝑖 = 𝑀)) |
11 | | csbeq1 3793 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑀 → ⦋𝑗 / 𝑥⦌𝐵 = ⦋𝑀 / 𝑥⦌𝐵) |
12 | 11 | ineq2d 4103 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑀 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵)) |
13 | 12 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
14 | 10, 13 | orbi12d 918 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → ((𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
15 | 14 | ralunsn 4782 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)))) |
16 | 15 | ralbidv 3109 |
. . . . . 6
⊢ (𝑀 ∈ 𝑉 → (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑖 ∈ 𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)))) |
17 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → (𝑀 = 𝑗 ↔ 𝑀 = 𝑀)) |
18 | 11 | ineq2d 4103 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑀 → (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵)) |
19 | 18 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
20 | 17, 19 | orbi12d 918 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → ((𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (𝑀 = 𝑀 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
21 | 20 | ralunsn 4782 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑀 = 𝑀 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)))) |
22 | | eqid 2738 |
. . . . . . . . 9
⊢ 𝑀 = 𝑀 |
23 | 22 | orci 864 |
. . . . . . . 8
⊢ (𝑀 = 𝑀 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) |
24 | 23 | biantru 533 |
. . . . . . 7
⊢
(∀𝑗 ∈
𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑀 = 𝑀 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
25 | 21, 24 | bitr4di 292 |
. . . . . 6
⊢ (𝑀 ∈ 𝑉 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
26 | 16, 25 | anbi12d 634 |
. . . . 5
⊢ (𝑀 ∈ 𝑉 → ((∀𝑖 ∈ 𝐴 ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) ↔ (∀𝑖 ∈ 𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
27 | 9, 26 | bitrd 282 |
. . . 4
⊢ (𝑀 ∈ 𝑉 → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (∀𝑖 ∈ 𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
28 | | r19.26 3084 |
. . . . . 6
⊢
(∀𝑖 ∈
𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ↔ (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
29 | | disjors 5011 |
. . . . . . 7
⊢
(Disj 𝑥
∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
30 | 29 | anbi1i 627 |
. . . . . 6
⊢
((Disj 𝑥
∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ↔ (∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
31 | 28, 30 | bitr4i 281 |
. . . . 5
⊢
(∀𝑖 ∈
𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
32 | 31 | anbi1i 627 |
. . . 4
⊢
((∀𝑖 ∈
𝐴 (∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) ↔ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
33 | 27, 32 | bitrdi 290 |
. . 3
⊢ (𝑀 ∈ 𝑉 → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
34 | 33 | adantr 484 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)))) |
35 | | orcom 869 |
. . . . . . . . 9
⊢
(((⦋𝑖
/ 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ 𝑖 = 𝑀) ↔ (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
36 | 35 | ralbii 3080 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝐴 ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ 𝑖 = 𝑀) ↔ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
37 | | r19.30 3244 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
𝐴 ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ 𝑖 = 𝑀) → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑖 ∈ 𝐴 𝑖 = 𝑀)) |
38 | | risset 3177 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝐴 ↔ ∃𝑖 ∈ 𝐴 𝑖 = 𝑀) |
39 | | biorf 936 |
. . . . . . . . . . . 12
⊢ (¬
∃𝑖 ∈ 𝐴 𝑖 = 𝑀 → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
40 | 38, 39 | sylnbi 333 |
. . . . . . . . . . 11
⊢ (¬
𝑀 ∈ 𝐴 → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
41 | 40 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅))) |
42 | | orcom 869 |
. . . . . . . . . 10
⊢
((∃𝑖 ∈
𝐴 𝑖 = 𝑀 ∨ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑖 ∈ 𝐴 𝑖 = 𝑀)) |
43 | 41, 42 | bitrdi 290 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑖 ∈ 𝐴 𝑖 = 𝑀))) |
44 | 37, 43 | syl5ibr 249 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ∨ 𝑖 = 𝑀) → ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
45 | 36, 44 | syl5bir 246 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) → ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
46 | | olc 867 |
. . . . . . . 8
⊢
((⦋𝑖 /
𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ → (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
47 | 46 | ralimi 3075 |
. . . . . . 7
⊢
(∀𝑖 ∈
𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ → ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
48 | 45, 47 | impbid1 228 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
49 | | nfv 1921 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝐵 ∩ 𝐶) = ∅ |
50 | | nfcsb1v 3814 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 |
51 | | nfcv 2899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝐶 |
52 | 50, 51 | nfin 4107 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) |
53 | 52 | nfeq1 2914 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅ |
54 | | csbeq1a 3804 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) |
55 | 54 | ineq1d 4102 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → (𝐵 ∩ 𝐶) = (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶)) |
56 | 55 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑖 → ((𝐵 ∩ 𝐶) = ∅ ↔ (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
57 | 49, 53, 56 | cbvralw 3340 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅) |
58 | 57 | a1i 11 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
59 | | ss0b 4286 |
. . . . . . . . . . 11
⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ⊆ ∅ ↔ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅) |
60 | | iunss 4931 |
. . . . . . . . . . 11
⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ⊆ ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ⊆ ∅) |
61 | | iunin1 4957 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) |
62 | 61 | eqeq1i 2743 |
. . . . . . . . . . 11
⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) |
63 | 59, 60, 62 | 3bitr3ri 305 |
. . . . . . . . . 10
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ⊆ ∅) |
64 | | ss0b 4286 |
. . . . . . . . . . 11
⊢ ((𝐵 ∩ 𝐶) ⊆ ∅ ↔ (𝐵 ∩ 𝐶) = ∅) |
65 | 64 | ralbii 3080 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 (𝐵 ∩ 𝐶) ⊆ ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅) |
66 | 63, 65 | bitri 278 |
. . . . . . . . 9
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅) |
67 | 66 | a1i 11 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅)) |
68 | | nfcvd 2900 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝑉 → Ⅎ𝑥𝐶) |
69 | | disjunsn.s |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑀 → 𝐵 = 𝐶) |
70 | 68, 69 | csbiegf 3823 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝑉 → ⦋𝑀 / 𝑥⦌𝐵 = 𝐶) |
71 | 70 | ineq2d 4103 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝑉 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶)) |
72 | 71 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑉 → ((⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
73 | 72 | ralbidv 3109 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → (∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
74 | 58, 67, 73 | 3bitr4d 314 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
75 | 74 | adantr 484 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑖 ∈ 𝐴 (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) |
76 | 48, 75 | bitr4d 285 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅) ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) |
77 | 76 | anbi2d 632 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |
78 | | orcom 869 |
. . . . . . . 8
⊢
(((⦋𝑀
/ 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ 𝑀 = 𝑗) ↔ (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
79 | 78 | ralbii 3080 |
. . . . . . 7
⊢
(∀𝑗 ∈
𝐴 ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ 𝑀 = 𝑗) ↔ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
80 | | r19.30 3244 |
. . . . . . . 8
⊢
(∀𝑗 ∈
𝐴 ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ 𝑀 = 𝑗) → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑗 ∈ 𝐴 𝑀 = 𝑗)) |
81 | | clel5 3563 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝐴 ↔ ∃𝑗 ∈ 𝐴 𝑀 = 𝑗) |
82 | | biorf 936 |
. . . . . . . . . . 11
⊢ (¬
∃𝑗 ∈ 𝐴 𝑀 = 𝑗 → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
83 | 81, 82 | sylnbi 333 |
. . . . . . . . . 10
⊢ (¬
𝑀 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
84 | 83 | adantl 485 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (∃𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅))) |
85 | | orcom 869 |
. . . . . . . . 9
⊢
((∃𝑗 ∈
𝐴 𝑀 = 𝑗 ∨ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑗 ∈ 𝐴 𝑀 = 𝑗)) |
86 | 84, 85 | bitrdi 290 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ ∃𝑗 ∈ 𝐴 𝑀 = 𝑗))) |
87 | 80, 86 | syl5ibr 249 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ∨ 𝑀 = 𝑗) → ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
88 | 79, 87 | syl5bir 246 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) → ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
89 | | olc 867 |
. . . . . . 7
⊢
((⦋𝑀 /
𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ → (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
90 | 89 | ralimi 3075 |
. . . . . 6
⊢
(∀𝑗 ∈
𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ → ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
91 | 88, 90 | impbid1 228 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
92 | | nfv 1921 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝐵 ∩ 𝐶) = ∅ |
93 | | nfcsb1v 3814 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑗 / 𝑥⦌𝐵 |
94 | 93, 51 | nfin 4107 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) |
95 | 94 | nfeq1 2914 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅ |
96 | | csbeq1a 3804 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑥⦌𝐵) |
97 | 96 | ineq1d 4102 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑗 → (𝐵 ∩ 𝐶) = (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶)) |
98 | 97 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑗 → ((𝐵 ∩ 𝐶) = ∅ ↔ (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
99 | 92, 95, 98 | cbvralw 3340 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅) |
100 | 99 | a1i 11 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅)) |
101 | | incom 4091 |
. . . . . . . . . 10
⊢
(⦋𝑗 /
𝑥⦌𝐵 ∩ 𝐶) = (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) |
102 | 101 | eqeq1i 2743 |
. . . . . . . . 9
⊢
((⦋𝑗 /
𝑥⦌𝐵 ∩ 𝐶) = ∅ ↔ (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) |
103 | 102 | ralbii 3080 |
. . . . . . . 8
⊢
(∀𝑗 ∈
𝐴 (⦋𝑗 / 𝑥⦌𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) |
104 | 100, 103 | bitrdi 290 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
105 | 70 | ineq1d 4102 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑉 → (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵)) |
106 | 105 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → ((⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
107 | 106 | ralbidv 3109 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑉 → (∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅ ↔ ∀𝑗 ∈ 𝐴 (𝐶 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
108 | 104, 67, 107 | 3bitr4d 314 |
. . . . . 6
⊢ (𝑀 ∈ 𝑉 → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
109 | 108 | adantr 484 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → ((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ↔ ∀𝑗 ∈ 𝐴 (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
110 | 91, 109 | bitr4d 285 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅) ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) |
111 | 77, 110 | anbi12d 634 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) ↔ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |
112 | | anass 472 |
. . . 4
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ ((∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |
113 | | anidm 568 |
. . . . 5
⊢
(((∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) |
114 | 113 | anbi2i 626 |
. . . 4
⊢
((Disj 𝑥
∈ 𝐴 𝐵 ∧ ((∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅ ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) |
115 | 112, 114 | bitri 278 |
. . 3
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ∧ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅)) |
116 | 111, 115 | bitrdi 290 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (((Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑖 ∈ 𝐴 (𝑖 = 𝑀 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑀 / 𝑥⦌𝐵) = ∅)) ∧ ∀𝑗 ∈ 𝐴 (𝑀 = 𝑗 ∨ (⦋𝑀 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |
117 | 34, 116 | bitrd 282 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (Disj 𝑥 ∈ 𝐴 𝐵 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ∩ 𝐶) = ∅))) |