Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjunsn Structured version   Visualization version   GIF version

Theorem disjunsn 30912
Description: Append an element to a disjoint collection. Similar to ralunsn 4830, gsumunsn 19542, etc. (Contributed by Thierry Arnoux, 28-Mar-2018.)
Hypothesis
Ref Expression
disjunsn.s (𝑥 = 𝑀𝐵 = 𝐶)
Assertion
Ref Expression
disjunsn ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑀   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjunsn
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjors 5059 . . . . . 6 (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ ∀𝑖 ∈ (𝐴 ∪ {𝑀})∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
2 eqeq1 2743 . . . . . . . . 9 (𝑖 = 𝑀 → (𝑖 = 𝑗𝑀 = 𝑗))
3 csbeq1 3839 . . . . . . . . . . 11 (𝑖 = 𝑀𝑖 / 𝑥𝐵 = 𝑀 / 𝑥𝐵)
43ineq1d 4150 . . . . . . . . . 10 (𝑖 = 𝑀 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵))
54eqeq1d 2741 . . . . . . . . 9 (𝑖 = 𝑀 → ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
62, 5orbi12d 915 . . . . . . . 8 (𝑖 = 𝑀 → ((𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)))
76ralbidv 3122 . . . . . . 7 (𝑖 = 𝑀 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)))
87ralunsn 4830 . . . . . 6 (𝑀𝑉 → (∀𝑖 ∈ (𝐴 ∪ {𝑀})∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ (∀𝑖𝐴𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))))
91, 8syl5bb 282 . . . . 5 (𝑀𝑉 → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (∀𝑖𝐴𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))))
10 eqeq2 2751 . . . . . . . . 9 (𝑗 = 𝑀 → (𝑖 = 𝑗𝑖 = 𝑀))
11 csbeq1 3839 . . . . . . . . . . 11 (𝑗 = 𝑀𝑗 / 𝑥𝐵 = 𝑀 / 𝑥𝐵)
1211ineq2d 4151 . . . . . . . . . 10 (𝑗 = 𝑀 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵))
1312eqeq1d 2741 . . . . . . . . 9 (𝑗 = 𝑀 → ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
1410, 13orbi12d 915 . . . . . . . 8 (𝑗 = 𝑀 → ((𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)))
1514ralunsn 4830 . . . . . . 7 (𝑀𝑉 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))))
1615ralbidv 3122 . . . . . 6 (𝑀𝑉 → (∀𝑖𝐴𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ ∀𝑖𝐴 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))))
17 eqeq2 2751 . . . . . . . . 9 (𝑗 = 𝑀 → (𝑀 = 𝑗𝑀 = 𝑀))
1811ineq2d 4151 . . . . . . . . . 10 (𝑗 = 𝑀 → (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = (𝑀 / 𝑥𝐵𝑀 / 𝑥𝐵))
1918eqeq1d 2741 . . . . . . . . 9 (𝑗 = 𝑀 → ((𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ (𝑀 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
2017, 19orbi12d 915 . . . . . . . 8 (𝑗 = 𝑀 → ((𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ (𝑀 = 𝑀 ∨ (𝑀 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)))
2120ralunsn 4830 . . . . . . 7 (𝑀𝑉 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ (∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ (𝑀 = 𝑀 ∨ (𝑀 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))))
22 eqid 2739 . . . . . . . . 9 𝑀 = 𝑀
2322orci 861 . . . . . . . 8 (𝑀 = 𝑀 ∨ (𝑀 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)
2423biantru 529 . . . . . . 7 (∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ (∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ (𝑀 = 𝑀 ∨ (𝑀 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)))
2521, 24bitr4di 288 . . . . . 6 (𝑀𝑉 → (∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)))
2616, 25anbi12d 630 . . . . 5 (𝑀𝑉 → ((∀𝑖𝐴𝑗 ∈ (𝐴 ∪ {𝑀})(𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ ∀𝑗 ∈ (𝐴 ∪ {𝑀})(𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) ↔ (∀𝑖𝐴 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ∧ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))))
279, 26bitrd 278 . . . 4 (𝑀𝑉 → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (∀𝑖𝐴 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ∧ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))))
28 r19.26 3096 . . . . . 6 (∀𝑖𝐴 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ↔ (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)))
29 disjors 5059 . . . . . . 7 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
3029anbi1i 623 . . . . . 6 ((Disj 𝑥𝐴 𝐵 ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ↔ (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)))
3128, 30bitr4i 277 . . . . 5 (∀𝑖𝐴 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ↔ (Disj 𝑥𝐴 𝐵 ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)))
3231anbi1i 623 . . . 4 ((∀𝑖𝐴 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ∧ (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ∧ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) ↔ ((Disj 𝑥𝐴 𝐵 ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ∧ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)))
3327, 32bitrdi 286 . . 3 (𝑀𝑉 → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ ((Disj 𝑥𝐴 𝐵 ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ∧ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))))
3433adantr 480 . 2 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ ((Disj 𝑥𝐴 𝐵 ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ∧ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))))
35 orcom 866 . . . . . . . . 9 (((𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ∨ 𝑖 = 𝑀) ↔ (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
3635ralbii 3092 . . . . . . . 8 (∀𝑖𝐴 ((𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ∨ 𝑖 = 𝑀) ↔ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
37 r19.30 3267 . . . . . . . . 9 (∀𝑖𝐴 ((𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ∨ 𝑖 = 𝑀) → (∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ∨ ∃𝑖𝐴 𝑖 = 𝑀))
38 risset 3195 . . . . . . . . . . . 12 (𝑀𝐴 ↔ ∃𝑖𝐴 𝑖 = 𝑀)
39 biorf 933 . . . . . . . . . . . 12 (¬ ∃𝑖𝐴 𝑖 = 𝑀 → (∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ↔ (∃𝑖𝐴 𝑖 = 𝑀 ∨ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)))
4038, 39sylnbi 329 . . . . . . . . . . 11 𝑀𝐴 → (∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ↔ (∃𝑖𝐴 𝑖 = 𝑀 ∨ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)))
4140adantl 481 . . . . . . . . . 10 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ↔ (∃𝑖𝐴 𝑖 = 𝑀 ∨ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)))
42 orcom 866 . . . . . . . . . 10 ((∃𝑖𝐴 𝑖 = 𝑀 ∨ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅) ↔ (∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ∨ ∃𝑖𝐴 𝑖 = 𝑀))
4341, 42bitrdi 286 . . . . . . . . 9 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ↔ (∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ∨ ∃𝑖𝐴 𝑖 = 𝑀)))
4437, 43syl5ibr 245 . . . . . . . 8 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑖𝐴 ((𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ∨ 𝑖 = 𝑀) → ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
4536, 44syl5bir 242 . . . . . . 7 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅) → ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
46 olc 864 . . . . . . . 8 ((𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ → (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
4746ralimi 3088 . . . . . . 7 (∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ → ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
4845, 47impbid1 224 . . . . . 6 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅) ↔ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
49 nfv 1920 . . . . . . . . . 10 𝑖(𝐵𝐶) = ∅
50 nfcsb1v 3861 . . . . . . . . . . . 12 𝑥𝑖 / 𝑥𝐵
51 nfcv 2908 . . . . . . . . . . . 12 𝑥𝐶
5250, 51nfin 4155 . . . . . . . . . . 11 𝑥(𝑖 / 𝑥𝐵𝐶)
5352nfeq1 2923 . . . . . . . . . 10 𝑥(𝑖 / 𝑥𝐵𝐶) = ∅
54 csbeq1a 3850 . . . . . . . . . . . 12 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
5554ineq1d 4150 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝐵𝐶) = (𝑖 / 𝑥𝐵𝐶))
5655eqeq1d 2741 . . . . . . . . . 10 (𝑥 = 𝑖 → ((𝐵𝐶) = ∅ ↔ (𝑖 / 𝑥𝐵𝐶) = ∅))
5749, 53, 56cbvralw 3371 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝐶) = ∅ ↔ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝐶) = ∅)
5857a1i 11 . . . . . . . 8 (𝑀𝑉 → (∀𝑥𝐴 (𝐵𝐶) = ∅ ↔ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝐶) = ∅))
59 ss0b 4336 . . . . . . . . . . 11 ( 𝑥𝐴 (𝐵𝐶) ⊆ ∅ ↔ 𝑥𝐴 (𝐵𝐶) = ∅)
60 iunss 4979 . . . . . . . . . . 11 ( 𝑥𝐴 (𝐵𝐶) ⊆ ∅ ↔ ∀𝑥𝐴 (𝐵𝐶) ⊆ ∅)
61 iunin1 5005 . . . . . . . . . . . 12 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶)
6261eqeq1i 2744 . . . . . . . . . . 11 ( 𝑥𝐴 (𝐵𝐶) = ∅ ↔ ( 𝑥𝐴 𝐵𝐶) = ∅)
6359, 60, 623bitr3ri 301 . . . . . . . . . 10 (( 𝑥𝐴 𝐵𝐶) = ∅ ↔ ∀𝑥𝐴 (𝐵𝐶) ⊆ ∅)
64 ss0b 4336 . . . . . . . . . . 11 ((𝐵𝐶) ⊆ ∅ ↔ (𝐵𝐶) = ∅)
6564ralbii 3092 . . . . . . . . . 10 (∀𝑥𝐴 (𝐵𝐶) ⊆ ∅ ↔ ∀𝑥𝐴 (𝐵𝐶) = ∅)
6663, 65bitri 274 . . . . . . . . 9 (( 𝑥𝐴 𝐵𝐶) = ∅ ↔ ∀𝑥𝐴 (𝐵𝐶) = ∅)
6766a1i 11 . . . . . . . 8 (𝑀𝑉 → (( 𝑥𝐴 𝐵𝐶) = ∅ ↔ ∀𝑥𝐴 (𝐵𝐶) = ∅))
68 nfcvd 2909 . . . . . . . . . . . 12 (𝑀𝑉𝑥𝐶)
69 disjunsn.s . . . . . . . . . . . 12 (𝑥 = 𝑀𝐵 = 𝐶)
7068, 69csbiegf 3870 . . . . . . . . . . 11 (𝑀𝑉𝑀 / 𝑥𝐵 = 𝐶)
7170ineq2d 4151 . . . . . . . . . 10 (𝑀𝑉 → (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = (𝑖 / 𝑥𝐵𝐶))
7271eqeq1d 2741 . . . . . . . . 9 (𝑀𝑉 → ((𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ↔ (𝑖 / 𝑥𝐵𝐶) = ∅))
7372ralbidv 3122 . . . . . . . 8 (𝑀𝑉 → (∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅ ↔ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝐶) = ∅))
7458, 67, 733bitr4d 310 . . . . . . 7 (𝑀𝑉 → (( 𝑥𝐴 𝐵𝐶) = ∅ ↔ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
7574adantr 480 . . . . . 6 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (( 𝑥𝐴 𝐵𝐶) = ∅ ↔ ∀𝑖𝐴 (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅))
7648, 75bitr4d 281 . . . . 5 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅) ↔ ( 𝑥𝐴 𝐵𝐶) = ∅))
7776anbi2d 628 . . . 4 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → ((Disj 𝑥𝐴 𝐵 ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ↔ (Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅)))
78 orcom 866 . . . . . . . 8 (((𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∨ 𝑀 = 𝑗) ↔ (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
7978ralbii 3092 . . . . . . 7 (∀𝑗𝐴 ((𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∨ 𝑀 = 𝑗) ↔ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
80 r19.30 3267 . . . . . . . 8 (∀𝑗𝐴 ((𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∨ 𝑀 = 𝑗) → (∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∨ ∃𝑗𝐴 𝑀 = 𝑗))
81 clel5 3597 . . . . . . . . . . 11 (𝑀𝐴 ↔ ∃𝑗𝐴 𝑀 = 𝑗)
82 biorf 933 . . . . . . . . . . 11 (¬ ∃𝑗𝐴 𝑀 = 𝑗 → (∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ (∃𝑗𝐴 𝑀 = 𝑗 ∨ ∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)))
8381, 82sylnbi 329 . . . . . . . . . 10 𝑀𝐴 → (∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ (∃𝑗𝐴 𝑀 = 𝑗 ∨ ∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)))
8483adantl 481 . . . . . . . . 9 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ (∃𝑗𝐴 𝑀 = 𝑗 ∨ ∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)))
85 orcom 866 . . . . . . . . 9 ((∃𝑗𝐴 𝑀 = 𝑗 ∨ ∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ (∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∨ ∃𝑗𝐴 𝑀 = 𝑗))
8684, 85bitrdi 286 . . . . . . . 8 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ (∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∨ ∃𝑗𝐴 𝑀 = 𝑗)))
8780, 86syl5ibr 245 . . . . . . 7 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑗𝐴 ((𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∨ 𝑀 = 𝑗) → ∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
8879, 87syl5bir 242 . . . . . 6 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → ∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
89 olc 864 . . . . . . 7 ((𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
9089ralimi 3088 . . . . . 6 (∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
9188, 90impbid1 224 . . . . 5 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ ∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
92 nfv 1920 . . . . . . . . . 10 𝑗(𝐵𝐶) = ∅
93 nfcsb1v 3861 . . . . . . . . . . . 12 𝑥𝑗 / 𝑥𝐵
9493, 51nfin 4155 . . . . . . . . . . 11 𝑥(𝑗 / 𝑥𝐵𝐶)
9594nfeq1 2923 . . . . . . . . . 10 𝑥(𝑗 / 𝑥𝐵𝐶) = ∅
96 csbeq1a 3850 . . . . . . . . . . . 12 (𝑥 = 𝑗𝐵 = 𝑗 / 𝑥𝐵)
9796ineq1d 4150 . . . . . . . . . . 11 (𝑥 = 𝑗 → (𝐵𝐶) = (𝑗 / 𝑥𝐵𝐶))
9897eqeq1d 2741 . . . . . . . . . 10 (𝑥 = 𝑗 → ((𝐵𝐶) = ∅ ↔ (𝑗 / 𝑥𝐵𝐶) = ∅))
9992, 95, 98cbvralw 3371 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝐶) = ∅ ↔ ∀𝑗𝐴 (𝑗 / 𝑥𝐵𝐶) = ∅)
10099a1i 11 . . . . . . . 8 (𝑀𝑉 → (∀𝑥𝐴 (𝐵𝐶) = ∅ ↔ ∀𝑗𝐴 (𝑗 / 𝑥𝐵𝐶) = ∅))
101 incom 4139 . . . . . . . . . 10 (𝑗 / 𝑥𝐵𝐶) = (𝐶𝑗 / 𝑥𝐵)
102101eqeq1i 2744 . . . . . . . . 9 ((𝑗 / 𝑥𝐵𝐶) = ∅ ↔ (𝐶𝑗 / 𝑥𝐵) = ∅)
103102ralbii 3092 . . . . . . . 8 (∀𝑗𝐴 (𝑗 / 𝑥𝐵𝐶) = ∅ ↔ ∀𝑗𝐴 (𝐶𝑗 / 𝑥𝐵) = ∅)
104100, 103bitrdi 286 . . . . . . 7 (𝑀𝑉 → (∀𝑥𝐴 (𝐵𝐶) = ∅ ↔ ∀𝑗𝐴 (𝐶𝑗 / 𝑥𝐵) = ∅))
10570ineq1d 4150 . . . . . . . . 9 (𝑀𝑉 → (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = (𝐶𝑗 / 𝑥𝐵))
106105eqeq1d 2741 . . . . . . . 8 (𝑀𝑉 → ((𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ (𝐶𝑗 / 𝑥𝐵) = ∅))
107106ralbidv 3122 . . . . . . 7 (𝑀𝑉 → (∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ ∀𝑗𝐴 (𝐶𝑗 / 𝑥𝐵) = ∅))
108104, 67, 1073bitr4d 310 . . . . . 6 (𝑀𝑉 → (( 𝑥𝐴 𝐵𝐶) = ∅ ↔ ∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
109108adantr 480 . . . . 5 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (( 𝑥𝐴 𝐵𝐶) = ∅ ↔ ∀𝑗𝐴 (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
11091, 109bitr4d 281 . . . 4 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) ↔ ( 𝑥𝐴 𝐵𝐶) = ∅))
11177, 110anbi12d 630 . . 3 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (((Disj 𝑥𝐴 𝐵 ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ∧ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) ↔ ((Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅) ∧ ( 𝑥𝐴 𝐵𝐶) = ∅)))
112 anass 468 . . . 4 (((Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅) ∧ ( 𝑥𝐴 𝐵𝐶) = ∅) ↔ (Disj 𝑥𝐴 𝐵 ∧ (( 𝑥𝐴 𝐵𝐶) = ∅ ∧ ( 𝑥𝐴 𝐵𝐶) = ∅)))
113 anidm 564 . . . . 5 ((( 𝑥𝐴 𝐵𝐶) = ∅ ∧ ( 𝑥𝐴 𝐵𝐶) = ∅) ↔ ( 𝑥𝐴 𝐵𝐶) = ∅)
114113anbi2i 622 . . . 4 ((Disj 𝑥𝐴 𝐵 ∧ (( 𝑥𝐴 𝐵𝐶) = ∅ ∧ ( 𝑥𝐴 𝐵𝐶) = ∅)) ↔ (Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅))
115112, 114bitri 274 . . 3 (((Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅) ∧ ( 𝑥𝐴 𝐵𝐶) = ∅) ↔ (Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅))
116111, 115bitrdi 286 . 2 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (((Disj 𝑥𝐴 𝐵 ∧ ∀𝑖𝐴 (𝑖 = 𝑀 ∨ (𝑖 / 𝑥𝐵𝑀 / 𝑥𝐵) = ∅)) ∧ ∀𝑗𝐴 (𝑀 = 𝑗 ∨ (𝑀 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) ↔ (Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅)))
11734, 116bitrd 278 1 ((𝑀𝑉 ∧ ¬ 𝑀𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {𝑀})𝐵 ↔ (Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴 𝐵𝐶) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1541  wcel 2109  wral 3065  wrex 3066  csb 3836  cun 3889  cin 3890  wss 3891  c0 4261  {csn 4566   ciun 4929  Disj wdisj 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-sn 4567  df-iun 4931  df-disj 5044
This theorem is referenced by:  disjun0  30913  disjiunel  30914
  Copyright terms: Public domain W3C validator