MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phisum Structured version   Visualization version   GIF version

Theorem phisum 16824
Description: The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
phisum (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Distinct variable group:   𝑥,𝑁,𝑑

Proof of Theorem phisum
Dummy variables 𝑧 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5151 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
21elrab 3695 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁))
3 hashgcdeq 16823 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
43adantrr 717 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
5 iftrue 4537 . . . . . . 7 (𝑦𝑁 → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
65ad2antll 729 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
74, 6eqtrd 2775 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
82, 7sylan2b 594 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
98sumeq2dv 15735 . . 3 (𝑁 ∈ ℕ → Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
10 fzfi 14010 . . . . 5 (1...𝑁) ∈ Fin
11 dvdsssfz1 16352 . . . . 5 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
12 ssfi 9212 . . . . 5 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁)) → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
1310, 11, 12sylancr 587 . . . 4 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
14 fzofi 14012 . . . . . 6 (0..^𝑁) ∈ Fin
15 ssrab2 4090 . . . . . 6 {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)
16 ssfi 9212 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
1714, 15, 16mp2an 692 . . . . 5 {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin
1817a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
19 oveq1 7438 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 gcd 𝑁) = (𝑤 gcd 𝑁))
2019eqeq1d 2737 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑤 gcd 𝑁) = 𝑦))
2120elrab 3695 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑤 ∈ (0..^𝑁) ∧ (𝑤 gcd 𝑁) = 𝑦))
2221simprbi 496 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} → (𝑤 gcd 𝑁) = 𝑦)
2322rgen 3061 . . . . . 6 𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
2423rgenw 3063 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
25 invdisj 5134 . . . . 5 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
2624, 25mp1i 13 . . . 4 (𝑁 ∈ ℕ → Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
2713, 18, 26hashiun 15855 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
28 fveq2 6907 . . . 4 (𝑑 = (𝑁 / 𝑦) → (ϕ‘𝑑) = (ϕ‘(𝑁 / 𝑦)))
29 eqid 2735 . . . . 5 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
30 eqid 2735 . . . . 5 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))
3129, 30dvdsflip 16351 . . . 4 (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
32 oveq2 7439 . . . . . 6 (𝑧 = 𝑦 → (𝑁 / 𝑧) = (𝑁 / 𝑦))
33 ovex 7464 . . . . . 6 (𝑁 / 𝑦) ∈ V
3432, 30, 33fvmpt 7016 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦))
3534adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦))
36 elrabi 3690 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
3736adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
3837phicld 16806 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℕ)
3938nncnd 12280 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℂ)
4028, 13, 31, 35, 39fsumf1o 15756 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
419, 27, 403eqtr4rd 2786 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
42 iunrab 5057 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦}
43 breq1 5151 . . . . . . . . 9 (𝑥 = (𝑧 gcd 𝑁) → (𝑥𝑁 ↔ (𝑧 gcd 𝑁) ∥ 𝑁))
44 elfzoelz 13696 . . . . . . . . . . 11 (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ ℤ)
4544adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑧 ∈ ℤ)
46 nnz 12632 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4746adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
48 nnne0 12298 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
4948neneqd 2943 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
5049intnand 488 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
5150adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
52 gcdn0cl 16536 . . . . . . . . . 10 (((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑧 = 0 ∧ 𝑁 = 0)) → (𝑧 gcd 𝑁) ∈ ℕ)
5345, 47, 51, 52syl21anc 838 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ ℕ)
54 gcddvds 16537 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
5545, 47, 54syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
5655simprd 495 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∥ 𝑁)
5743, 53, 56elrabd 3697 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
58 clel5 3665 . . . . . . . 8 ((𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
5957, 58sylib 218 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
6059ralrimiva 3144 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
61 rabid2 3468 . . . . . 6 ((0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦} ↔ ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
6260, 61sylibr 234 . . . . 5 (𝑁 ∈ ℕ → (0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦})
6342, 62eqtr4id 2794 . . . 4 (𝑁 ∈ ℕ → 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = (0..^𝑁))
6463fveq2d 6911 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (♯‘(0..^𝑁)))
65 nnnn0 12531 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
66 hashfzo0 14466 . . . 4 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
6765, 66syl 17 . . 3 (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁)
6864, 67eqtrd 2775 . 2 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = 𝑁)
6941, 68eqtrd 2775 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  wss 3963  ifcif 4531   ciun 4996  Disj wdisj 5115   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  1c1 11154   / cdiv 11918  cn 12264  0cn0 12524  cz 12611  ...cfz 13544  ..^cfzo 13691  chash 14366  Σcsu 15719  cdvds 16287   gcd cgcd 16528  ϕcphi 16798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-phi 16800
This theorem is referenced by:  unitscyglem2  42178  unitscyglem4  42180
  Copyright terms: Public domain W3C validator