MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phisum Structured version   Visualization version   GIF version

Theorem phisum 16673
Description: The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
phisum (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Distinct variable group:   𝑥,𝑁,𝑑

Proof of Theorem phisum
Dummy variables 𝑧 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5113 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
21elrab 3648 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁))
3 hashgcdeq 16672 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
43adantrr 715 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
5 iftrue 4497 . . . . . . 7 (𝑦𝑁 → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
65ad2antll 727 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
74, 6eqtrd 2771 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
82, 7sylan2b 594 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
98sumeq2dv 15599 . . 3 (𝑁 ∈ ℕ → Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
10 fzfi 13887 . . . . 5 (1...𝑁) ∈ Fin
11 dvdsssfz1 16211 . . . . 5 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
12 ssfi 9124 . . . . 5 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁)) → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
1310, 11, 12sylancr 587 . . . 4 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
14 fzofi 13889 . . . . . 6 (0..^𝑁) ∈ Fin
15 ssrab2 4042 . . . . . 6 {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)
16 ssfi 9124 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
1714, 15, 16mp2an 690 . . . . 5 {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin
1817a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
19 oveq1 7369 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 gcd 𝑁) = (𝑤 gcd 𝑁))
2019eqeq1d 2733 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑤 gcd 𝑁) = 𝑦))
2120elrab 3648 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑤 ∈ (0..^𝑁) ∧ (𝑤 gcd 𝑁) = 𝑦))
2221simprbi 497 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} → (𝑤 gcd 𝑁) = 𝑦)
2322rgen 3062 . . . . . 6 𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
2423rgenw 3064 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
25 invdisj 5094 . . . . 5 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
2624, 25mp1i 13 . . . 4 (𝑁 ∈ ℕ → Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
2713, 18, 26hashiun 15718 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
28 fveq2 6847 . . . 4 (𝑑 = (𝑁 / 𝑦) → (ϕ‘𝑑) = (ϕ‘(𝑁 / 𝑦)))
29 eqid 2731 . . . . 5 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
30 eqid 2731 . . . . 5 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))
3129, 30dvdsflip 16210 . . . 4 (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
32 oveq2 7370 . . . . . 6 (𝑧 = 𝑦 → (𝑁 / 𝑧) = (𝑁 / 𝑦))
33 ovex 7395 . . . . . 6 (𝑁 / 𝑦) ∈ V
3432, 30, 33fvmpt 6953 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦))
3534adantl 482 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦))
36 elrabi 3642 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
3736adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
3837phicld 16655 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℕ)
3938nncnd 12178 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℂ)
4028, 13, 31, 35, 39fsumf1o 15619 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
419, 27, 403eqtr4rd 2782 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
42 iunrab 5017 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦}
43 breq1 5113 . . . . . . . . 9 (𝑥 = (𝑧 gcd 𝑁) → (𝑥𝑁 ↔ (𝑧 gcd 𝑁) ∥ 𝑁))
44 elfzoelz 13582 . . . . . . . . . . 11 (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ ℤ)
4544adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑧 ∈ ℤ)
46 nnz 12529 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4746adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
48 nnne0 12196 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
4948neneqd 2944 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
5049intnand 489 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
5150adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
52 gcdn0cl 16393 . . . . . . . . . 10 (((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑧 = 0 ∧ 𝑁 = 0)) → (𝑧 gcd 𝑁) ∈ ℕ)
5345, 47, 51, 52syl21anc 836 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ ℕ)
54 gcddvds 16394 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
5545, 47, 54syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
5655simprd 496 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∥ 𝑁)
5743, 53, 56elrabd 3650 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
58 clel5 3620 . . . . . . . 8 ((𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
5957, 58sylib 217 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
6059ralrimiva 3139 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
61 rabid2 3437 . . . . . 6 ((0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦} ↔ ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
6260, 61sylibr 233 . . . . 5 (𝑁 ∈ ℕ → (0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦})
6342, 62eqtr4id 2790 . . . 4 (𝑁 ∈ ℕ → 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = (0..^𝑁))
6463fveq2d 6851 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (♯‘(0..^𝑁)))
65 nnnn0 12429 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
66 hashfzo0 14340 . . . 4 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
6765, 66syl 17 . . 3 (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁)
6864, 67eqtrd 2771 . 2 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = 𝑁)
6941, 68eqtrd 2771 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069  {crab 3405  wss 3913  ifcif 4491   ciun 4959  Disj wdisj 5075   class class class wbr 5110  cmpt 5193  cfv 6501  (class class class)co 7362  Fincfn 8890  0cc0 11060  1c1 11061   / cdiv 11821  cn 12162  0cn0 12422  cz 12508  ...cfz 13434  ..^cfzo 13577  chash 14240  Σcsu 15582  cdvds 16147   gcd cgcd 16385  ϕcphi 16647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-xnn0 12495  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-fzo 13578  df-fl 13707  df-mod 13785  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-sum 15583  df-dvds 16148  df-gcd 16386  df-phi 16649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator