MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phisum Structured version   Visualization version   GIF version

Theorem phisum 16768
Description: The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
phisum (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Distinct variable group:   𝑥,𝑁,𝑑

Proof of Theorem phisum
Dummy variables 𝑧 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5113 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
21elrab 3662 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁))
3 hashgcdeq 16767 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
43adantrr 717 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
5 iftrue 4497 . . . . . . 7 (𝑦𝑁 → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
65ad2antll 729 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
74, 6eqtrd 2765 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
82, 7sylan2b 594 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
98sumeq2dv 15675 . . 3 (𝑁 ∈ ℕ → Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
10 dvdsfi 16766 . . . 4 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
11 fzofi 13946 . . . . . 6 (0..^𝑁) ∈ Fin
12 ssrab2 4046 . . . . . 6 {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)
13 ssfi 9143 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
1411, 12, 13mp2an 692 . . . . 5 {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin
1514a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
16 oveq1 7397 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 gcd 𝑁) = (𝑤 gcd 𝑁))
1716eqeq1d 2732 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑤 gcd 𝑁) = 𝑦))
1817elrab 3662 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑤 ∈ (0..^𝑁) ∧ (𝑤 gcd 𝑁) = 𝑦))
1918simprbi 496 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} → (𝑤 gcd 𝑁) = 𝑦)
2019rgen 3047 . . . . . 6 𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
2120rgenw 3049 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
22 invdisj 5096 . . . . 5 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
2321, 22mp1i 13 . . . 4 (𝑁 ∈ ℕ → Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
2410, 15, 23hashiun 15795 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
25 fveq2 6861 . . . 4 (𝑑 = (𝑁 / 𝑦) → (ϕ‘𝑑) = (ϕ‘(𝑁 / 𝑦)))
26 eqid 2730 . . . . 5 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
27 eqid 2730 . . . . 5 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))
2826, 27dvdsflip 16294 . . . 4 (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
29 oveq2 7398 . . . . . 6 (𝑧 = 𝑦 → (𝑁 / 𝑧) = (𝑁 / 𝑦))
30 ovex 7423 . . . . . 6 (𝑁 / 𝑦) ∈ V
3129, 27, 30fvmpt 6971 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦))
3231adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦))
33 elrabi 3657 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
3433adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
3534phicld 16749 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℕ)
3635nncnd 12209 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℂ)
3725, 10, 28, 32, 36fsumf1o 15696 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
389, 24, 373eqtr4rd 2776 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
39 iunrab 5019 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦}
40 breq1 5113 . . . . . . . . 9 (𝑥 = (𝑧 gcd 𝑁) → (𝑥𝑁 ↔ (𝑧 gcd 𝑁) ∥ 𝑁))
41 elfzoelz 13627 . . . . . . . . . . 11 (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ ℤ)
4241adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑧 ∈ ℤ)
43 nnz 12557 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4443adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
45 nnne0 12227 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
4645neneqd 2931 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
4746intnand 488 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
4847adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
49 gcdn0cl 16479 . . . . . . . . . 10 (((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑧 = 0 ∧ 𝑁 = 0)) → (𝑧 gcd 𝑁) ∈ ℕ)
5042, 44, 48, 49syl21anc 837 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ ℕ)
51 gcddvds 16480 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
5242, 44, 51syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
5352simprd 495 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∥ 𝑁)
5440, 50, 53elrabd 3664 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
55 clel5 3634 . . . . . . . 8 ((𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
5654, 55sylib 218 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
5756ralrimiva 3126 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
58 rabid2 3442 . . . . . 6 ((0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦} ↔ ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
5957, 58sylibr 234 . . . . 5 (𝑁 ∈ ℕ → (0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦})
6039, 59eqtr4id 2784 . . . 4 (𝑁 ∈ ℕ → 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = (0..^𝑁))
6160fveq2d 6865 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (♯‘(0..^𝑁)))
62 nnnn0 12456 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
63 hashfzo0 14402 . . . 4 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
6462, 63syl 17 . . 3 (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁)
6561, 64eqtrd 2765 . 2 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = 𝑁)
6638, 65eqtrd 2765 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  wss 3917  ifcif 4491   ciun 4958  Disj wdisj 5077   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  ..^cfzo 13622  chash 14302  Σcsu 15659  cdvds 16229   gcd cgcd 16471  ϕcphi 16741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-phi 16743
This theorem is referenced by:  unitscyglem2  42191  unitscyglem4  42193
  Copyright terms: Public domain W3C validator