Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clelabOLD | Structured version Visualization version GIF version |
Description: Obsolete version of clelab 2876 as of 2-Sep-2024. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
clelabOLD | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2813 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
2 | nfv 1921 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝜑) | |
3 | nfv 1921 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | |
4 | nfsab1 2726 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
5 | 3, 4 | nfan 1906 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
6 | eqeq1 2743 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
7 | sbequ12 2253 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
8 | df-clab 2718 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
9 | 7, 8 | bitr4di 292 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑})) |
10 | 6, 9 | anbi12d 634 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}))) |
11 | 2, 5, 10 | cbvexv1 2345 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) |
12 | 1, 11 | bitr4i 281 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ∃wex 1786 [wsb 2074 ∈ wcel 2114 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |