MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelabOLD Structured version   Visualization version   GIF version

Theorem clelabOLD 2883
Description: Obsolete version of clelab 2882 as of 2-Sep-2024. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
clelabOLD (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem clelabOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2818 . 2 (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}))
2 nfv 1918 . . 3 𝑦(𝑥 = 𝐴𝜑)
3 nfv 1918 . . . 4 𝑥 𝑦 = 𝐴
4 nfsab1 2723 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
53, 4nfan 1903 . . 3 𝑥(𝑦 = 𝐴𝑦 ∈ {𝑥𝜑})
6 eqeq1 2742 . . . 4 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
7 sbequ12 2247 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
8 df-clab 2716 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
97, 8bitr4di 288 . . . 4 (𝑥 = 𝑦 → (𝜑𝑦 ∈ {𝑥𝜑}))
106, 9anbi12d 630 . . 3 (𝑥 = 𝑦 → ((𝑥 = 𝐴𝜑) ↔ (𝑦 = 𝐴𝑦 ∈ {𝑥𝜑})))
112, 5, 10cbvexv1 2341 . 2 (∃𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}))
121, 11bitr4i 277 1 (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator