Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clelabOLD | Structured version Visualization version GIF version |
Description: Obsolete version of clelab 2882 as of 2-Sep-2024. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
clelabOLD | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2818 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝜑) | |
3 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | |
4 | nfsab1 2723 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
5 | 3, 4 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
6 | eqeq1 2742 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
7 | sbequ12 2247 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
8 | df-clab 2716 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
9 | 7, 8 | bitr4di 288 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑})) |
10 | 6, 9 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}))) |
11 | 2, 5, 10 | cbvexv1 2341 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) |
12 | 1, 11 | bitr4i 277 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 [wsb 2068 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |