| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1 5809 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
| 2 | coss1 5809 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
| 4 | eqss 3959 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3959 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-co 5640 |
| This theorem is referenced by: coeq1i 5813 coeq1d 5815 coi2 6224 funcoeqres 6813 wrecseq123 8269 ereq1 8655 domssex2 9078 wemapwe 9626 dfttrcl2 9653 updjud 9863 seqf1olem2 13983 seqf1o 13984 relexpsucnnl 14972 isps 18509 pwsco1mhm 18741 frmdup3 18776 efmndov 18790 symggrplem 18793 smndex1mndlem 18818 smndex1mnd 18819 pmtr3ncom 19389 psgnunilem1 19407 frgpup3 19692 gsumval3 19821 rngcinv 20557 ringcinv 20591 frgpcyg 21515 frlmup4 21743 evlseu 22023 evlsval2 22027 selvval 22055 evls1val 22240 evls1sca 22243 evl1val 22249 mpfpf1 22271 pf1mpf 22272 pf1ind 22275 xkococnlem 23579 xkococn 23580 cnmpt1k 23602 cnmptkk 23603 xkofvcn 23604 qtopeu 23636 qtophmeo 23737 utop2nei 24171 cncombf 25592 dgrcolem2 26213 dgrco 26214 motplusg 28522 hocsubdir 31764 hoddi 31969 opsqrlem1 32119 1arithidom 33501 smatfval 33778 msubco 35511 coideq 38228 trljco 40727 tgrpov 40735 tendovalco 40752 erngmul 40793 erngmul-rN 40801 cdlemksv 40831 cdlemkuu 40882 cdlemk41 40907 cdleml5N 40967 cdleml9 40971 dvamulr 40999 dvavadd 41002 dvhmulr 41073 dvhvscacbv 41085 dvhvscaval 41086 dih1dimatlem0 41315 dihjatcclem4 41408 evlsval3 42540 diophrw 42740 eldioph2 42743 diophren 42794 mendmulr 43166 fundcmpsurinjpreimafv 47402 rngcinvALTV 48257 ringcinvALTV 48291 itcoval 48643 setc1ocofval 49476 |
| Copyright terms: Public domain | W3C validator |