| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1 5819 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
| 2 | coss1 5819 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
| 4 | eqss 3962 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3962 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-co 5647 |
| This theorem is referenced by: coeq1i 5823 coeq1d 5825 coi2 6236 funcoeqres 6831 wrecseq123 8292 ereq1 8678 domssex2 9101 wemapwe 9650 dfttrcl2 9677 updjud 9887 seqf1olem2 14007 seqf1o 14008 relexpsucnnl 14996 isps 18527 pwsco1mhm 18759 frmdup3 18794 efmndov 18808 symggrplem 18811 smndex1mndlem 18836 smndex1mnd 18837 pmtr3ncom 19405 psgnunilem1 19423 frgpup3 19708 gsumval3 19837 rngcinv 20546 ringcinv 20580 frgpcyg 21483 frlmup4 21710 evlseu 21990 evlsval2 21994 selvval 22022 evls1val 22207 evls1sca 22210 evl1val 22216 mpfpf1 22238 pf1mpf 22239 pf1ind 22242 xkococnlem 23546 xkococn 23547 cnmpt1k 23569 cnmptkk 23570 xkofvcn 23571 qtopeu 23603 qtophmeo 23704 utop2nei 24138 cncombf 25559 dgrcolem2 26180 dgrco 26181 motplusg 28469 hocsubdir 31714 hoddi 31919 opsqrlem1 32069 1arithidom 33508 smatfval 33785 msubco 35518 coideq 38235 trljco 40734 tgrpov 40742 tendovalco 40759 erngmul 40800 erngmul-rN 40808 cdlemksv 40838 cdlemkuu 40889 cdlemk41 40914 cdleml5N 40974 cdleml9 40978 dvamulr 41006 dvavadd 41009 dvhmulr 41080 dvhvscacbv 41092 dvhvscaval 41093 dih1dimatlem0 41322 dihjatcclem4 41415 evlsval3 42547 diophrw 42747 eldioph2 42750 diophren 42801 mendmulr 43173 fundcmpsurinjpreimafv 47409 rngcinvALTV 48264 ringcinvALTV 48298 itcoval 48650 setc1ocofval 49483 |
| Copyright terms: Public domain | W3C validator |