Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1 5782 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
2 | coss1 5782 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
4 | eqss 3945 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3945 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
6 | 3, 4, 5 | 3imtr4i 291 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ⊆ wss 3896 ∘ ccom 5609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3903 df-ss 3913 df-br 5086 df-opab 5148 df-co 5614 |
This theorem is referenced by: coeq1i 5786 coeq1d 5788 coi2 6186 funcoeqres 6782 wrecseq123 8175 ereq1 8551 domssex2 8977 wemapwe 9523 dfttrcl2 9550 updjud 9760 seqf1olem2 13833 seqf1o 13834 relexpsucnnl 14810 isps 18353 pwsco1mhm 18537 frmdup3 18573 efmndov 18587 symggrplem 18590 smndex1mndlem 18615 smndex1mnd 18616 pmtr3ncom 19150 psgnunilem1 19168 frgpup3 19451 gsumval3 19575 frgpcyg 20852 frlmup4 21079 evlseu 21364 evlsval2 21368 selvval 21399 evls1val 21557 evls1sca 21560 evl1val 21566 mpfpf1 21588 pf1mpf 21589 pf1ind 21592 xkococnlem 22881 xkococn 22882 cnmpt1k 22904 cnmptkk 22905 xkofvcn 22906 qtopeu 22938 qtophmeo 23039 utop2nei 23473 cncombf 24893 dgrcolem2 25506 dgrco 25507 motplusg 27011 hocsubdir 30255 hoddi 30460 opsqrlem1 30610 smatfval 31851 msubco 33599 coideq 36466 trljco 38966 tgrpov 38974 tendovalco 38991 erngmul 39032 erngmul-rN 39040 cdlemksv 39070 cdlemkuu 39121 cdlemk41 39146 cdleml5N 39206 cdleml9 39210 dvamulr 39238 dvavadd 39241 dvhmulr 39312 dvhvscacbv 39324 dvhvscaval 39325 dih1dimatlem0 39554 dihjatcclem4 39647 evlsval3 40482 diophrw 40791 eldioph2 40794 diophren 40845 mendmulr 41224 fundcmpsurinjpreimafv 45119 rngcinv 45798 rngcinvALTV 45810 ringcinv 45849 ringcinvALTV 45873 itcoval 46266 |
Copyright terms: Public domain | W3C validator |