Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1 5753 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
2 | coss1 5753 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
4 | eqss 3932 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3932 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
6 | 3, 4, 5 | 3imtr4i 291 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3883 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-co 5589 |
This theorem is referenced by: coeq1i 5757 coeq1d 5759 coi2 6156 funcoeqres 6730 wrecseq123 8101 ereq1 8463 domssex2 8873 wemapwe 9385 updjud 9623 seqf1olem2 13691 seqf1o 13692 relexpsucnnl 14669 isps 18201 pwsco1mhm 18385 frmdup3 18421 efmndov 18435 symggrplem 18438 smndex1mndlem 18463 smndex1mnd 18464 pmtr3ncom 18998 psgnunilem1 19016 frgpup3 19299 gsumval3 19423 frgpcyg 20693 frlmup4 20918 evlseu 21203 evlsval2 21207 selvval 21238 evls1val 21396 evls1sca 21399 evl1val 21405 mpfpf1 21427 pf1mpf 21428 pf1ind 21431 xkococnlem 22718 xkococn 22719 cnmpt1k 22741 cnmptkk 22742 xkofvcn 22743 qtopeu 22775 qtophmeo 22876 utop2nei 23310 cncombf 24727 dgrcolem2 25340 dgrco 25341 motplusg 26807 hocsubdir 30048 hoddi 30253 opsqrlem1 30403 smatfval 31647 msubco 33393 dfttrcl2 33710 coideq 36312 trljco 38681 tgrpov 38689 tendovalco 38706 erngmul 38747 erngmul-rN 38755 cdlemksv 38785 cdlemkuu 38836 cdlemk41 38861 cdleml5N 38921 cdleml9 38925 dvamulr 38953 dvavadd 38956 dvhmulr 39027 dvhvscacbv 39039 dvhvscaval 39040 dih1dimatlem0 39269 dihjatcclem4 39362 evlsval3 40195 diophrw 40497 eldioph2 40500 diophren 40551 mendmulr 40929 fundcmpsurinjpreimafv 44748 rngcinv 45427 rngcinvALTV 45439 ringcinv 45478 ringcinvALTV 45502 itcoval 45895 |
Copyright terms: Public domain | W3C validator |