![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1 5880 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
2 | coss1 5880 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
4 | eqss 4024 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 4024 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-co 5709 |
This theorem is referenced by: coeq1i 5884 coeq1d 5886 coi2 6294 funcoeqres 6893 wrecseq123 8355 ereq1 8770 domssex2 9203 wemapwe 9766 dfttrcl2 9793 updjud 10003 seqf1olem2 14093 seqf1o 14094 relexpsucnnl 15079 isps 18638 pwsco1mhm 18867 frmdup3 18902 efmndov 18916 symggrplem 18919 smndex1mndlem 18944 smndex1mnd 18945 pmtr3ncom 19517 psgnunilem1 19535 frgpup3 19820 gsumval3 19949 rngcinv 20659 ringcinv 20693 frgpcyg 21615 frlmup4 21844 evlseu 22130 evlsval2 22134 selvval 22162 evls1val 22345 evls1sca 22348 evl1val 22354 mpfpf1 22376 pf1mpf 22377 pf1ind 22380 xkococnlem 23688 xkococn 23689 cnmpt1k 23711 cnmptkk 23712 xkofvcn 23713 qtopeu 23745 qtophmeo 23846 utop2nei 24280 cncombf 25712 dgrcolem2 26334 dgrco 26335 motplusg 28568 hocsubdir 31817 hoddi 32022 opsqrlem1 32172 1arithidom 33530 smatfval 33741 msubco 35499 coideq 38202 trljco 40697 tgrpov 40705 tendovalco 40722 erngmul 40763 erngmul-rN 40771 cdlemksv 40801 cdlemkuu 40852 cdlemk41 40877 cdleml5N 40937 cdleml9 40941 dvamulr 40969 dvavadd 40972 dvhmulr 41043 dvhvscacbv 41055 dvhvscaval 41056 dih1dimatlem0 41285 dihjatcclem4 41378 evlsval3 42514 diophrw 42715 eldioph2 42718 diophren 42769 mendmulr 43145 fundcmpsurinjpreimafv 47282 rngcinvALTV 47999 ringcinvALTV 48033 itcoval 48395 |
Copyright terms: Public domain | W3C validator |