| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1 5822 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
| 2 | coss1 5822 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
| 4 | eqss 3965 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3965 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3917 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-co 5650 |
| This theorem is referenced by: coeq1i 5826 coeq1d 5828 coi2 6239 funcoeqres 6834 wrecseq123 8295 ereq1 8681 domssex2 9107 wemapwe 9657 dfttrcl2 9684 updjud 9894 seqf1olem2 14014 seqf1o 14015 relexpsucnnl 15003 isps 18534 pwsco1mhm 18766 frmdup3 18801 efmndov 18815 symggrplem 18818 smndex1mndlem 18843 smndex1mnd 18844 pmtr3ncom 19412 psgnunilem1 19430 frgpup3 19715 gsumval3 19844 rngcinv 20553 ringcinv 20587 frgpcyg 21490 frlmup4 21717 evlseu 21997 evlsval2 22001 selvval 22029 evls1val 22214 evls1sca 22217 evl1val 22223 mpfpf1 22245 pf1mpf 22246 pf1ind 22249 xkococnlem 23553 xkococn 23554 cnmpt1k 23576 cnmptkk 23577 xkofvcn 23578 qtopeu 23610 qtophmeo 23711 utop2nei 24145 cncombf 25566 dgrcolem2 26187 dgrco 26188 motplusg 28476 hocsubdir 31721 hoddi 31926 opsqrlem1 32076 1arithidom 33515 smatfval 33792 msubco 35525 coideq 38242 trljco 40741 tgrpov 40749 tendovalco 40766 erngmul 40807 erngmul-rN 40815 cdlemksv 40845 cdlemkuu 40896 cdlemk41 40921 cdleml5N 40981 cdleml9 40985 dvamulr 41013 dvavadd 41016 dvhmulr 41087 dvhvscacbv 41099 dvhvscaval 41100 dih1dimatlem0 41329 dihjatcclem4 41422 evlsval3 42554 diophrw 42754 eldioph2 42757 diophren 42808 mendmulr 43180 fundcmpsurinjpreimafv 47413 rngcinvALTV 48268 ringcinvALTV 48302 itcoval 48654 setc1ocofval 49487 |
| Copyright terms: Public domain | W3C validator |