| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1 5809 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
| 2 | coss1 5809 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
| 4 | eqss 3959 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3959 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-co 5640 |
| This theorem is referenced by: coeq1i 5813 coeq1d 5815 coi2 6224 funcoeqres 6813 wrecseq123 8269 ereq1 8655 domssex2 9078 wemapwe 9626 dfttrcl2 9653 updjud 9863 seqf1olem2 13983 seqf1o 13984 relexpsucnnl 14972 isps 18503 pwsco1mhm 18735 frmdup3 18770 efmndov 18784 symggrplem 18787 smndex1mndlem 18812 smndex1mnd 18813 pmtr3ncom 19381 psgnunilem1 19399 frgpup3 19684 gsumval3 19813 rngcinv 20522 ringcinv 20556 frgpcyg 21459 frlmup4 21686 evlseu 21966 evlsval2 21970 selvval 21998 evls1val 22183 evls1sca 22186 evl1val 22192 mpfpf1 22214 pf1mpf 22215 pf1ind 22218 xkococnlem 23522 xkococn 23523 cnmpt1k 23545 cnmptkk 23546 xkofvcn 23547 qtopeu 23579 qtophmeo 23680 utop2nei 24114 cncombf 25535 dgrcolem2 26156 dgrco 26157 motplusg 28445 hocsubdir 31687 hoddi 31892 opsqrlem1 32042 1arithidom 33481 smatfval 33758 msubco 35491 coideq 38208 trljco 40707 tgrpov 40715 tendovalco 40732 erngmul 40773 erngmul-rN 40781 cdlemksv 40811 cdlemkuu 40862 cdlemk41 40887 cdleml5N 40947 cdleml9 40951 dvamulr 40979 dvavadd 40982 dvhmulr 41053 dvhvscacbv 41065 dvhvscaval 41066 dih1dimatlem0 41295 dihjatcclem4 41388 evlsval3 42520 diophrw 42720 eldioph2 42723 diophren 42774 mendmulr 43146 fundcmpsurinjpreimafv 47382 rngcinvALTV 48237 ringcinvALTV 48271 itcoval 48623 setc1ocofval 49456 |
| Copyright terms: Public domain | W3C validator |