![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1 5869 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
2 | coss1 5869 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
4 | eqss 4011 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 4011 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3963 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 df-br 5149 df-opab 5211 df-co 5698 |
This theorem is referenced by: coeq1i 5873 coeq1d 5875 coi2 6285 funcoeqres 6880 wrecseq123 8338 ereq1 8751 domssex2 9176 wemapwe 9735 dfttrcl2 9762 updjud 9972 seqf1olem2 14080 seqf1o 14081 relexpsucnnl 15066 isps 18626 pwsco1mhm 18858 frmdup3 18893 efmndov 18907 symggrplem 18910 smndex1mndlem 18935 smndex1mnd 18936 pmtr3ncom 19508 psgnunilem1 19526 frgpup3 19811 gsumval3 19940 rngcinv 20654 ringcinv 20688 frgpcyg 21610 frlmup4 21839 evlseu 22125 evlsval2 22129 selvval 22157 evls1val 22340 evls1sca 22343 evl1val 22349 mpfpf1 22371 pf1mpf 22372 pf1ind 22375 xkococnlem 23683 xkococn 23684 cnmpt1k 23706 cnmptkk 23707 xkofvcn 23708 qtopeu 23740 qtophmeo 23841 utop2nei 24275 cncombf 25707 dgrcolem2 26329 dgrco 26330 motplusg 28565 hocsubdir 31814 hoddi 32019 opsqrlem1 32169 1arithidom 33545 smatfval 33756 msubco 35516 coideq 38228 trljco 40723 tgrpov 40731 tendovalco 40748 erngmul 40789 erngmul-rN 40797 cdlemksv 40827 cdlemkuu 40878 cdlemk41 40903 cdleml5N 40963 cdleml9 40967 dvamulr 40995 dvavadd 40998 dvhmulr 41069 dvhvscacbv 41081 dvhvscaval 41082 dih1dimatlem0 41311 dihjatcclem4 41404 evlsval3 42546 diophrw 42747 eldioph2 42750 diophren 42801 mendmulr 43173 fundcmpsurinjpreimafv 47333 rngcinvALTV 48120 ringcinvALTV 48154 itcoval 48511 |
Copyright terms: Public domain | W3C validator |