| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1 5798 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
| 2 | coss1 5798 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
| 4 | eqss 3951 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3951 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3903 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 df-br 5093 df-opab 5155 df-co 5628 |
| This theorem is referenced by: coeq1i 5802 coeq1d 5804 coi2 6212 funcoeqres 6795 wrecseq123 8246 ereq1 8632 domssex2 9054 wemapwe 9593 dfttrcl2 9620 updjud 9830 seqf1olem2 13949 seqf1o 13950 relexpsucnnl 14937 isps 18474 pwsco1mhm 18706 frmdup3 18741 efmndov 18755 symggrplem 18758 smndex1mndlem 18783 smndex1mnd 18784 pmtr3ncom 19354 psgnunilem1 19372 frgpup3 19657 gsumval3 19786 rngcinv 20522 ringcinv 20556 frgpcyg 21480 frlmup4 21708 evlseu 21988 evlsval2 21992 selvval 22020 evls1val 22205 evls1sca 22208 evl1val 22214 mpfpf1 22236 pf1mpf 22237 pf1ind 22240 xkococnlem 23544 xkococn 23545 cnmpt1k 23567 cnmptkk 23568 xkofvcn 23569 qtopeu 23601 qtophmeo 23702 utop2nei 24136 cncombf 25557 dgrcolem2 26178 dgrco 26179 motplusg 28487 hocsubdir 31729 hoddi 31934 opsqrlem1 32084 1arithidom 33474 mplvrpmga 33546 smatfval 33762 msubco 35508 coideq 38225 trljco 40723 tgrpov 40731 tendovalco 40748 erngmul 40789 erngmul-rN 40797 cdlemksv 40827 cdlemkuu 40878 cdlemk41 40903 cdleml5N 40963 cdleml9 40967 dvamulr 40995 dvavadd 40998 dvhmulr 41069 dvhvscacbv 41081 dvhvscaval 41082 dih1dimatlem0 41311 dihjatcclem4 41404 evlsval3 42536 diophrw 42736 eldioph2 42739 diophren 42790 mendmulr 43161 fundcmpsurinjpreimafv 47396 rngcinvALTV 48264 ringcinvALTV 48298 itcoval 48650 setc1ocofval 49483 |
| Copyright terms: Public domain | W3C validator |