| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1 5794 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
| 2 | coss1 5794 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
| 4 | eqss 3945 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3945 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3897 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-co 5623 |
| This theorem is referenced by: coeq1i 5798 coeq1d 5800 coi2 6211 funcoeqres 6794 wrecseq123 8243 ereq1 8629 domssex2 9050 wemapwe 9587 dfttrcl2 9614 updjud 9827 seqf1olem2 13949 seqf1o 13950 relexpsucnnl 14937 isps 18474 pwsco1mhm 18740 frmdup3 18775 efmndov 18789 symggrplem 18792 smndex1mndlem 18817 smndex1mnd 18818 pmtr3ncom 19387 psgnunilem1 19405 frgpup3 19690 gsumval3 19819 rngcinv 20552 ringcinv 20586 frgpcyg 21510 frlmup4 21738 evlseu 22018 evlsval2 22022 selvval 22050 evls1val 22235 evls1sca 22238 evl1val 22244 mpfpf1 22266 pf1mpf 22267 pf1ind 22270 xkococnlem 23574 xkococn 23575 cnmpt1k 23597 cnmptkk 23598 xkofvcn 23599 qtopeu 23631 qtophmeo 23732 utop2nei 24165 cncombf 25586 dgrcolem2 26207 dgrco 26208 motplusg 28520 hocsubdir 31765 hoddi 31970 opsqrlem1 32120 1arithidom 33502 mplvrpmga 33575 mplvrpmrhm 33577 issply 33584 smatfval 33808 msubco 35575 coideq 38293 trljco 40849 tgrpov 40857 tendovalco 40874 erngmul 40915 erngmul-rN 40923 cdlemksv 40953 cdlemkuu 41004 cdlemk41 41029 cdleml5N 41089 cdleml9 41093 dvamulr 41121 dvavadd 41124 dvhmulr 41195 dvhvscacbv 41207 dvhvscaval 41208 dih1dimatlem0 41437 dihjatcclem4 41530 evlsval3 42662 diophrw 42862 eldioph2 42865 diophren 42916 mendmulr 43287 fundcmpsurinjpreimafv 47518 rngcinvALTV 48386 ringcinvALTV 48420 itcoval 48772 setc1ocofval 49605 |
| Copyright terms: Public domain | W3C validator |