Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1 5764 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
2 | coss1 5764 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
4 | eqss 3936 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3936 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊆ wss 3887 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-co 5598 |
This theorem is referenced by: coeq1i 5768 coeq1d 5770 coi2 6167 funcoeqres 6747 wrecseq123 8130 ereq1 8505 domssex2 8924 wemapwe 9455 dfttrcl2 9482 updjud 9692 seqf1olem2 13763 seqf1o 13764 relexpsucnnl 14741 isps 18286 pwsco1mhm 18470 frmdup3 18506 efmndov 18520 symggrplem 18523 smndex1mndlem 18548 smndex1mnd 18549 pmtr3ncom 19083 psgnunilem1 19101 frgpup3 19384 gsumval3 19508 frgpcyg 20781 frlmup4 21008 evlseu 21293 evlsval2 21297 selvval 21328 evls1val 21486 evls1sca 21489 evl1val 21495 mpfpf1 21517 pf1mpf 21518 pf1ind 21521 xkococnlem 22810 xkococn 22811 cnmpt1k 22833 cnmptkk 22834 xkofvcn 22835 qtopeu 22867 qtophmeo 22968 utop2nei 23402 cncombf 24822 dgrcolem2 25435 dgrco 25436 motplusg 26903 hocsubdir 30147 hoddi 30352 opsqrlem1 30502 smatfval 31745 msubco 33493 coideq 36385 trljco 38754 tgrpov 38762 tendovalco 38779 erngmul 38820 erngmul-rN 38828 cdlemksv 38858 cdlemkuu 38909 cdlemk41 38934 cdleml5N 38994 cdleml9 38998 dvamulr 39026 dvavadd 39029 dvhmulr 39100 dvhvscacbv 39112 dvhvscaval 39113 dih1dimatlem0 39342 dihjatcclem4 39435 evlsval3 40272 diophrw 40581 eldioph2 40584 diophren 40635 mendmulr 41013 fundcmpsurinjpreimafv 44860 rngcinv 45539 rngcinvALTV 45551 ringcinv 45590 ringcinvALTV 45614 itcoval 46007 |
Copyright terms: Public domain | W3C validator |