![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1 5856 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | |
2 | coss1 5856 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶)) | |
3 | 1, 2 | anim12i 614 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) |
4 | eqss 3998 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3998 | . 2 ⊢ ((𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) ↔ ((𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶) ∧ (𝐵 ∘ 𝐶) ⊆ (𝐴 ∘ 𝐶))) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ⊆ wss 3949 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-br 5150 df-opab 5212 df-co 5686 |
This theorem is referenced by: coeq1i 5860 coeq1d 5862 coi2 6263 funcoeqres 6865 wrecseq123 8299 ereq1 8710 domssex2 9137 wemapwe 9692 dfttrcl2 9719 updjud 9929 seqf1olem2 14008 seqf1o 14009 relexpsucnnl 14977 isps 18521 pwsco1mhm 18713 frmdup3 18748 efmndov 18762 symggrplem 18765 smndex1mndlem 18790 smndex1mnd 18791 pmtr3ncom 19343 psgnunilem1 19361 frgpup3 19646 gsumval3 19775 frgpcyg 21129 frlmup4 21356 evlseu 21646 evlsval2 21650 selvval 21681 evls1val 21839 evls1sca 21842 evl1val 21848 mpfpf1 21870 pf1mpf 21871 pf1ind 21874 xkococnlem 23163 xkococn 23164 cnmpt1k 23186 cnmptkk 23187 xkofvcn 23188 qtopeu 23220 qtophmeo 23321 utop2nei 23755 cncombf 25175 dgrcolem2 25788 dgrco 25789 motplusg 27793 hocsubdir 31038 hoddi 31243 opsqrlem1 31393 smatfval 32775 msubco 34522 coideq 37113 trljco 39611 tgrpov 39619 tendovalco 39636 erngmul 39677 erngmul-rN 39685 cdlemksv 39715 cdlemkuu 39766 cdlemk41 39791 cdleml5N 39851 cdleml9 39855 dvamulr 39883 dvavadd 39886 dvhmulr 39957 dvhvscacbv 39969 dvhvscaval 39970 dih1dimatlem0 40199 dihjatcclem4 40292 evlsval3 41131 diophrw 41497 eldioph2 41500 diophren 41551 mendmulr 41930 fundcmpsurinjpreimafv 46076 rngcinv 46879 rngcinvALTV 46891 ringcinv 46930 ringcinvALTV 46954 itcoval 47347 |
Copyright terms: Public domain | W3C validator |