| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eltrrels2 | Structured version Visualization version GIF version | ||
| Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| Ref | Expression |
|---|---|
| eltrrels2 | ⊢ (𝑅 ∈ TrRels ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftrrels2 38566 | . 2 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | |
| 2 | coideq 38235 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑟) = (𝑅 ∘ 𝑅)) | |
| 3 | id 22 | . . 3 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 4 | 2, 3 | sseq12d 3980 | . 2 ⊢ (𝑟 = 𝑅 → ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
| 5 | 1, 4 | rabeqel 38243 | 1 ⊢ (𝑅 ∈ TrRels ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∘ ccom 5642 Rels crels 38171 TrRels ctrrels 38183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-rels 38476 df-ssr 38489 df-trs 38563 df-trrels 38564 |
| This theorem is referenced by: eltrrelsrel 38572 |
| Copyright terms: Public domain | W3C validator |