Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrrels2 Structured version   Visualization version   GIF version

Theorem eltrrels2 38580
Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
eltrrels2 (𝑅 ∈ TrRels ↔ ((𝑅𝑅) ⊆ 𝑅𝑅 ∈ Rels ))

Proof of Theorem eltrrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dftrrels2 38576 . 2 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
2 coideq 38248 . . 3 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
3 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
42, 3sseq12d 4017 . 2 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
51, 4rabeqel 38255 1 (𝑅 ∈ TrRels ↔ ((𝑅𝑅) ⊆ 𝑅𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3951  ccom 5689   Rels crels 38184   TrRels ctrrels 38196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-rels 38486  df-ssr 38499  df-trs 38573  df-trrels 38574
This theorem is referenced by:  eltrrelsrel  38582
  Copyright terms: Public domain W3C validator