Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrrels2 Structured version   Visualization version   GIF version

Theorem eltrrels2 38566
Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
eltrrels2 (𝑅 ∈ TrRels ↔ ((𝑅𝑅) ⊆ 𝑅𝑅 ∈ Rels ))

Proof of Theorem eltrrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dftrrels2 38562 . 2 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
2 coideq 38231 . . 3 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
3 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
42, 3sseq12d 3969 . 2 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
51, 4rabeqel 38239 1 (𝑅 ∈ TrRels ↔ ((𝑅𝑅) ⊆ 𝑅𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3903  ccom 5623   Rels crels 38167   TrRels ctrrels 38179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-rels 38472  df-ssr 38485  df-trs 38559  df-trrels 38560
This theorem is referenced by:  eltrrelsrel  38568
  Copyright terms: Public domain W3C validator