Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleqvrels2 | Structured version Visualization version GIF version |
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
Ref | Expression |
---|---|
eleqvrels2 | ⊢ (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeqvrels2 36438 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | |
2 | dmeq 5772 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | 2 | reseq2d 5851 | . . . 4 ⊢ (𝑟 = 𝑅 → ( I ↾ dom 𝑟) = ( I ↾ dom 𝑅)) |
4 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
5 | 3, 4 | sseq12d 3934 | . . 3 ⊢ (𝑟 = 𝑅 → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
6 | cnveq 5742 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
7 | 6, 4 | sseq12d 3934 | . . 3 ⊢ (𝑟 = 𝑅 → (◡𝑟 ⊆ 𝑟 ↔ ◡𝑅 ⊆ 𝑅)) |
8 | coideq 36122 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑟) = (𝑅 ∘ 𝑅)) | |
9 | 8, 4 | sseq12d 3934 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
10 | 5, 7, 9 | 3anbi123d 1438 | . 2 ⊢ (𝑟 = 𝑅 → ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) |
11 | 1, 10 | rabeqel 36131 | 1 ⊢ (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 I cid 5454 ◡ccnv 5550 dom cdm 5551 ↾ cres 5553 ∘ ccom 5555 Rels crels 36072 EqvRels ceqvrels 36086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-rels 36340 df-ssr 36353 df-refs 36365 df-refrels 36366 df-syms 36393 df-symrels 36394 df-trs 36423 df-trrels 36424 df-eqvrels 36434 |
This theorem is referenced by: eleqvrelsrel 36444 |
Copyright terms: Public domain | W3C validator |