| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eleqvrels2 | Structured version Visualization version GIF version | ||
| Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
| Ref | Expression |
|---|---|
| eleqvrels2 | ⊢ (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeqvrels2 38589 | . 2 ⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | |
| 2 | dmeq 5914 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
| 3 | 2 | reseq2d 5997 | . . . 4 ⊢ (𝑟 = 𝑅 → ( I ↾ dom 𝑟) = ( I ↾ dom 𝑅)) |
| 4 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 5 | 3, 4 | sseq12d 4017 | . . 3 ⊢ (𝑟 = 𝑅 → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) |
| 6 | cnveq 5884 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
| 7 | 6, 4 | sseq12d 4017 | . . 3 ⊢ (𝑟 = 𝑅 → (◡𝑟 ⊆ 𝑟 ↔ ◡𝑅 ⊆ 𝑅)) |
| 8 | coideq 38248 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑟) = (𝑅 ∘ 𝑅)) | |
| 9 | 8, 4 | sseq12d 4017 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
| 10 | 5, 7, 9 | 3anbi123d 1438 | . 2 ⊢ (𝑟 = 𝑅 → ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) |
| 11 | 1, 10 | rabeqel 38255 | 1 ⊢ (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 I cid 5577 ◡ccnv 5684 dom cdm 5685 ↾ cres 5687 ∘ ccom 5689 Rels crels 38184 EqvRels ceqvrels 38198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-rels 38486 df-ssr 38499 df-refs 38511 df-refrels 38512 df-syms 38543 df-symrels 38544 df-trs 38573 df-trrels 38574 df-eqvrels 38585 |
| This theorem is referenced by: eleqvrelsrel 38595 |
| Copyright terms: Public domain | W3C validator |