Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleqvrels2 Structured version   Visualization version   GIF version

Theorem eleqvrels2 38590
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.)
Assertion
Ref Expression
eleqvrels2 (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ))

Proof of Theorem eleqvrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfeqvrels2 38586 . 2 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
2 dmeq 5870 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
32reseq2d 5953 . . . 4 (𝑟 = 𝑅 → ( I ↾ dom 𝑟) = ( I ↾ dom 𝑅))
4 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
53, 4sseq12d 3983 . . 3 (𝑟 = 𝑅 → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
6 cnveq 5840 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
76, 4sseq12d 3983 . . 3 (𝑟 = 𝑅 → (𝑟𝑟𝑅𝑅))
8 coideq 38242 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
98, 4sseq12d 3983 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
105, 7, 93anbi123d 1438 . 2 (𝑟 = 𝑅 → ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅)))
111, 10rabeqel 38250 1 (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917   I cid 5535  ccnv 5640  dom cdm 5641  cres 5643  ccom 5645   Rels crels 38178   EqvRels ceqvrels 38192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-rels 38483  df-ssr 38496  df-refs 38508  df-refrels 38509  df-syms 38540  df-symrels 38541  df-trs 38570  df-trrels 38571  df-eqvrels 38582
This theorem is referenced by:  eleqvrelsrel  38592
  Copyright terms: Public domain W3C validator