Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleqvrels2 Structured version   Visualization version   GIF version

Theorem eleqvrels2 37083
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.)
Assertion
Ref Expression
eleqvrels2 (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ))

Proof of Theorem eleqvrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfeqvrels2 37079 . 2 EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
2 dmeq 5864 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
32reseq2d 5942 . . . 4 (𝑟 = 𝑅 → ( I ↾ dom 𝑟) = ( I ↾ dom 𝑅))
4 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
53, 4sseq12d 3982 . . 3 (𝑟 = 𝑅 → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
6 cnveq 5834 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
76, 4sseq12d 3982 . . 3 (𝑟 = 𝑅 → (𝑟𝑟𝑅𝑅))
8 coideq 36733 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
98, 4sseq12d 3982 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
105, 7, 93anbi123d 1437 . 2 (𝑟 = 𝑅 → ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅)))
111, 10rabeqel 36743 1 (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3915   I cid 5535  ccnv 5637  dom cdm 5638  cres 5640  ccom 5642   Rels crels 36665   EqvRels ceqvrels 36679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-rels 36976  df-ssr 36989  df-refs 37001  df-refrels 37002  df-syms 37033  df-symrels 37034  df-trs 37063  df-trrels 37064  df-eqvrels 37075
This theorem is referenced by:  eleqvrelsrel  37085
  Copyright terms: Public domain W3C validator