![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trreleq | Structured version Visualization version GIF version |
Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
trreleq | ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coideq 38202 | . . . 4 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑆)) | |
2 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
3 | 1, 2 | sseq12d 4042 | . . 3 ⊢ (𝑅 = 𝑆 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
4 | releq 5800 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
5 | 3, 4 | anbi12d 631 | . 2 ⊢ (𝑅 = 𝑆 → (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ∧ Rel 𝑆))) |
6 | dftrrel2 38533 | . 2 ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | |
7 | dftrrel2 38533 | . 2 ⊢ ( TrRel 𝑆 ↔ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ∧ Rel 𝑆)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ∘ ccom 5704 Rel wrel 5705 TrRel wtrrel 38150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-trrel 38530 |
This theorem is referenced by: eqvreleq 38558 |
Copyright terms: Public domain | W3C validator |