Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trreleq Structured version   Visualization version   GIF version

Theorem trreleq 38538
Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
trreleq (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))

Proof of Theorem trreleq
StepHypRef Expression
1 coideq 38202 . . . 4 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑆))
2 id 22 . . . 4 (𝑅 = 𝑆𝑅 = 𝑆)
31, 2sseq12d 4042 . . 3 (𝑅 = 𝑆 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑆𝑆) ⊆ 𝑆))
4 releq 5800 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
53, 4anbi12d 631 . 2 (𝑅 = 𝑆 → (((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ ((𝑆𝑆) ⊆ 𝑆 ∧ Rel 𝑆)))
6 dftrrel2 38533 . 2 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
7 dftrrel2 38533 . 2 ( TrRel 𝑆 ↔ ((𝑆𝑆) ⊆ 𝑆 ∧ Rel 𝑆))
85, 6, 73bitr4g 314 1 (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wss 3976  ccom 5704  Rel wrel 5705   TrRel wtrrel 38150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-trrel 38530
This theorem is referenced by:  eqvreleq  38558
  Copyright terms: Public domain W3C validator