Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trreleq Structured version   Visualization version   GIF version

Theorem trreleq 38086
Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
trreleq (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))

Proof of Theorem trreleq
StepHypRef Expression
1 coideq 37750 . . . 4 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑆))
2 id 22 . . . 4 (𝑅 = 𝑆𝑅 = 𝑆)
31, 2sseq12d 4015 . . 3 (𝑅 = 𝑆 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑆𝑆) ⊆ 𝑆))
4 releq 5782 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
53, 4anbi12d 630 . 2 (𝑅 = 𝑆 → (((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ ((𝑆𝑆) ⊆ 𝑆 ∧ Rel 𝑆)))
6 dftrrel2 38081 . 2 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
7 dftrrel2 38081 . 2 ( TrRel 𝑆 ↔ ((𝑆𝑆) ⊆ 𝑆 ∧ Rel 𝑆))
85, 6, 73bitr4g 313 1 (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wss 3949  ccom 5686  Rel wrel 5687   TrRel wtrrel 37696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-trrel 38078
This theorem is referenced by:  eqvreleq  38106
  Copyright terms: Public domain W3C validator