Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trreleq | Structured version Visualization version GIF version |
Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
trreleq | ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coideq 36312 | . . . 4 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑆)) | |
2 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
3 | 1, 2 | sseq12d 3950 | . . 3 ⊢ (𝑅 = 𝑆 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
4 | releq 5677 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
5 | 3, 4 | anbi12d 630 | . 2 ⊢ (𝑅 = 𝑆 → (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ∧ Rel 𝑆))) |
6 | dftrrel2 36618 | . 2 ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | |
7 | dftrrel2 36618 | . 2 ⊢ ( TrRel 𝑆 ↔ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ∧ Rel 𝑆)) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ⊆ wss 3883 ∘ ccom 5584 Rel wrel 5585 TrRel wtrrel 36275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-trrel 36615 |
This theorem is referenced by: eqvreleq 36642 |
Copyright terms: Public domain | W3C validator |