Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trreleq Structured version   Visualization version   GIF version

Theorem trreleq 36900
Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
trreleq (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))

Proof of Theorem trreleq
StepHypRef Expression
1 coideq 36560 . . . 4 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑆))
2 id 22 . . . 4 (𝑅 = 𝑆𝑅 = 𝑆)
31, 2sseq12d 3968 . . 3 (𝑅 = 𝑆 → ((𝑅𝑅) ⊆ 𝑅 ↔ (𝑆𝑆) ⊆ 𝑆))
4 releq 5722 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
53, 4anbi12d 632 . 2 (𝑅 = 𝑆 → (((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ ((𝑆𝑆) ⊆ 𝑆 ∧ Rel 𝑆)))
6 dftrrel2 36895 . 2 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
7 dftrrel2 36895 . 2 ( TrRel 𝑆 ↔ ((𝑆𝑆) ⊆ 𝑆 ∧ Rel 𝑆))
85, 6, 73bitr4g 314 1 (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wss 3901  ccom 5628  Rel wrel 5629   TrRel wtrrel 36504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-br 5097  df-opab 5159  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-trrel 36892
This theorem is referenced by:  eqvreleq  36920
  Copyright terms: Public domain W3C validator