![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trreleq | Structured version Visualization version GIF version |
Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
trreleq | ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coideq 37113 | . . . 4 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑆)) | |
2 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
3 | 1, 2 | sseq12d 4016 | . . 3 ⊢ (𝑅 = 𝑆 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
4 | releq 5777 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
5 | 3, 4 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ∧ Rel 𝑆))) |
6 | dftrrel2 37447 | . 2 ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | |
7 | dftrrel2 37447 | . 2 ⊢ ( TrRel 𝑆 ↔ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ∧ Rel 𝑆)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ⊆ wss 3949 ∘ ccom 5681 Rel wrel 5682 TrRel wtrrel 37058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-trrel 37444 |
This theorem is referenced by: eqvreleq 37472 |
Copyright terms: Public domain | W3C validator |