Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trreleq | Structured version Visualization version GIF version |
Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
trreleq | ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coideq 36560 | . . . 4 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑆)) | |
2 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
3 | 1, 2 | sseq12d 3968 | . . 3 ⊢ (𝑅 = 𝑆 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (𝑆 ∘ 𝑆) ⊆ 𝑆)) |
4 | releq 5722 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
5 | 3, 4 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ∧ Rel 𝑆))) |
6 | dftrrel2 36895 | . 2 ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | |
7 | dftrrel2 36895 | . 2 ⊢ ( TrRel 𝑆 ↔ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ∧ Rel 𝑆)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ⊆ wss 3901 ∘ ccom 5628 Rel wrel 5629 TrRel wtrrel 36504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-br 5097 df-opab 5159 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-trrel 36892 |
This theorem is referenced by: eqvreleq 36920 |
Copyright terms: Public domain | W3C validator |