Step | Hyp | Ref
| Expression |
1 | | brcgr3 34348 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉))) |
2 | | simp2 1136 |
. . . . . 6
⊢
((〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) |
3 | 1, 2 | syl6bi 252 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |
4 | | simp1 1135 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
5 | | simp21 1205 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
6 | | simp22 1206 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
7 | | simp23 1207 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
8 | | simp31 1208 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
9 | | simp33 1210 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁)) |
10 | | cgrxfr 34357 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) |
11 | 4, 5, 6, 7, 8, 9, 10 | syl132anc 1387 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) |
12 | 3, 11 | sylan2d 605 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) |
13 | 12 | imp 407 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉)) |
14 | | simprrl 778 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) → 𝑒 Btwn 〈𝐷, 𝐹〉) |
15 | 14, 14 | jca 512 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) → (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 𝑒 Btwn 〈𝐷, 𝐹〉)) |
16 | | simpl1 1190 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
17 | | simpl31 1253 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁)) |
18 | | simpl33 1255 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐹 ∈ (𝔼‘𝑁)) |
19 | 16, 17, 18 | cgrrflxd 34290 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉) |
20 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑒 ∈ (𝔼‘𝑁)) |
21 | 16, 20, 18 | cgrrflxd 34290 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 〈𝑒, 𝐹〉Cgr〈𝑒, 𝐹〉) |
22 | 19, 21 | jca 512 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝑒, 𝐹〉)) |
23 | 22 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) → (〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝑒, 𝐹〉)) |
24 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) → 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) |
25 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉) → 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉) |
26 | | simpl2 1191 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) |
27 | | simpl3 1192 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) |
28 | 17, 20, 18 | 3jca 1127 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) |
29 | | cgr3tr4 34354 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → ((〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉) → 〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉)) |
30 | 16, 26, 27, 28, 29 | syl13anc 1371 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉) → 〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉)) |
31 | | cgr3com 34355 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉 ↔ 〈𝐷, 〈𝑒, 𝐹〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉)) |
32 | 16, 27, 17, 20, 18, 31 | syl113anc 1381 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉 ↔ 〈𝐷, 〈𝑒, 𝐹〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉)) |
33 | | simpl32 1254 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁)) |
34 | | brcgr3 34348 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐷, 〈𝑒, 𝐹〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝐸, 𝐹〉))) |
35 | 16, 17, 20, 18, 17, 33, 18, 34 | syl133anc 1392 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (〈𝐷, 〈𝑒, 𝐹〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝐸, 𝐹〉))) |
36 | | simpr1 1193 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝐸, 𝐹〉)) → 〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉) |
37 | | simpr3 1195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝐸, 𝐹〉)) → 〈𝑒, 𝐹〉Cgr〈𝐸, 𝐹〉) |
38 | 16, 20, 18, 33, 18, 37 | cgrcomlrand 34303 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝐸, 𝐹〉)) → 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉) |
39 | 36, 38 | jca 512 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝐸, 𝐹〉)) → (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉)) |
40 | 39 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝐸, 𝐹〉) → (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉))) |
41 | 35, 40 | sylbid 239 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (〈𝐷, 〈𝑒, 𝐹〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 → (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉))) |
42 | 32, 41 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉 → (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉))) |
43 | 30, 42 | syld 47 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉) → (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉))) |
44 | 24, 25, 43 | syl2ani 607 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉)) → (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉))) |
45 | 44 | imp 407 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) → (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉)) |
46 | 15, 23, 45 | 3jca 1127 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) → ((𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 𝑒 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝑒, 𝐹〉) ∧ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉))) |
47 | 46 | ex 413 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉)) → ((𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 𝑒 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝑒, 𝐹〉) ∧ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉)))) |
48 | | brifs 34345 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (〈〈𝐷, 𝑒〉, 〈𝐹, 𝑒〉〉 InnerFiveSeg 〈〈𝐷, 𝑒〉, 〈𝐹, 𝐸〉〉 ↔ ((𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 𝑒 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝑒, 𝐹〉) ∧ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉)))) |
49 | | ifscgr 34346 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (〈〈𝐷, 𝑒〉, 〈𝐹, 𝑒〉〉 InnerFiveSeg 〈〈𝐷, 𝑒〉, 〈𝐹, 𝐸〉〉 → 〈𝑒, 𝑒〉Cgr〈𝑒, 𝐸〉)) |
50 | 48, 49 | sylbird 259 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (((𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 𝑒 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝑒, 𝐹〉) ∧ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉)) → 〈𝑒, 𝑒〉Cgr〈𝑒, 𝐸〉)) |
51 | 16, 17, 20, 18, 20, 17, 20, 18, 33, 50 | syl333anc 1401 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 𝑒 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐷, 𝐹〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝑒, 𝐹〉Cgr〈𝑒, 𝐹〉) ∧ (〈𝐷, 𝑒〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐹, 𝑒〉Cgr〈𝐹, 𝐸〉)) → 〈𝑒, 𝑒〉Cgr〈𝑒, 𝐸〉)) |
52 | 47, 51 | syld 47 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉)) → 〈𝑒, 𝑒〉Cgr〈𝑒, 𝐸〉)) |
53 | | cgrid2 34305 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (〈𝑒, 𝑒〉Cgr〈𝑒, 𝐸〉 → 𝑒 = 𝐸)) |
54 | 16, 20, 20, 33, 53 | syl13anc 1371 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (〈𝑒, 𝑒〉Cgr〈𝑒, 𝐸〉 → 𝑒 = 𝐸)) |
55 | 52, 54 | syld 47 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉)) → 𝑒 = 𝐸)) |
56 | 55 | imp 407 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) → 𝑒 = 𝐸) |
57 | 56, 14 | eqbrtrrd 5098 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) ∧ (𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) → 𝐸 Btwn 〈𝐷, 𝐹〉) |
58 | 57 | expr 457 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉)) → ((𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉) → 𝐸 Btwn 〈𝐷, 𝐹〉)) |
59 | 58 | an32s 649 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉)) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉) → 𝐸 Btwn 〈𝐷, 𝐹〉)) |
60 | 59 | rexlimdva 3213 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉)) → (∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉) → 𝐸 Btwn 〈𝐷, 𝐹〉)) |
61 | 13, 60 | mpd 15 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉)) → 𝐸 Btwn 〈𝐷, 𝐹〉) |
62 | 61 | ex 413 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) → 𝐸 Btwn 〈𝐷, 𝐹〉)) |