Step | Hyp | Ref
| Expression |
1 | | brcgr3 35323 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩))) |
2 | | simp2 1136 |
. . . . . 6
⊢
((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) |
3 | 1, 2 | syl6bi 253 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) |
4 | | simp1 1135 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
5 | | simp21 1205 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
6 | | simp22 1206 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
7 | | simp23 1207 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
8 | | simp31 1208 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
9 | | simp33 1210 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁)) |
10 | | cgrxfr 35332 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
11 | 4, 5, 6, 7, 8, 9, 10 | syl132anc 1387 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
12 | 3, 11 | sylan2d 604 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
13 | 12 | imp 406 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) |
14 | | simprrl 778 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) → 𝑒 Btwn ⟨𝐷, 𝐹⟩) |
15 | 14, 14 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝐹⟩)) |
16 | | simpl1 1190 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
17 | | simpl31 1253 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁)) |
18 | | simpl33 1255 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐹 ∈ (𝔼‘𝑁)) |
19 | 16, 17, 18 | cgrrflxd 35265 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩) |
20 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑒 ∈ (𝔼‘𝑁)) |
21 | 16, 20, 18 | cgrrflxd 35265 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ⟨𝑒, 𝐹⟩Cgr⟨𝑒, 𝐹⟩) |
22 | 19, 21 | jca 511 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝑒, 𝐹⟩)) |
23 | 22 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) → (⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝑒, 𝐹⟩)) |
24 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) |
25 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩) |
26 | | simpl2 1191 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) |
27 | | simpl3 1192 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) |
28 | 17, 20, 18 | 3jca 1127 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) |
29 | | cgr3tr4 35329 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) → ((⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩) → ⟨𝐷, ⟨𝐸, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) |
30 | 16, 26, 27, 28, 29 | syl13anc 1371 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩) → ⟨𝐷, ⟨𝐸, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) |
31 | | cgr3com 35330 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐷, ⟨𝐸, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ ⟨𝐷, ⟨𝑒, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩)) |
32 | 16, 27, 17, 20, 18, 31 | syl113anc 1381 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (⟨𝐷, ⟨𝐸, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ ⟨𝐷, ⟨𝑒, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩)) |
33 | | simpl32 1254 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁)) |
34 | | brcgr3 35323 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐷, ⟨𝑒, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐸, 𝐹⟩))) |
35 | 16, 17, 20, 18, 17, 33, 18, 34 | syl133anc 1392 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (⟨𝐷, ⟨𝑒, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐸, 𝐹⟩))) |
36 | | simpr1 1193 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩) |
37 | | simpr3 1195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝑒, 𝐹⟩Cgr⟨𝐸, 𝐹⟩) |
38 | 16, 20, 18, 33, 18, 37 | cgrcomlrand 35278 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩) |
39 | 36, 38 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐸, 𝐹⟩)) → (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩)) |
40 | 39 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐸, 𝐹⟩) → (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩))) |
41 | 35, 40 | sylbid 239 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (⟨𝐷, ⟨𝑒, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ → (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩))) |
42 | 32, 41 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (⟨𝐷, ⟨𝐸, 𝐹⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ → (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩))) |
43 | 30, 42 | syld 47 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩) → (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩))) |
44 | 24, 25, 43 | syl2ani 606 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) → (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩))) |
45 | 44 | imp 406 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) → (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩)) |
46 | 15, 23, 45 | 3jca 1127 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) → ((𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝑒, 𝐹⟩) ∧ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩))) |
47 | 46 | ex 412 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) → ((𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝑒, 𝐹⟩) ∧ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩)))) |
48 | | brifs 35320 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨⟨𝐷, 𝑒⟩, ⟨𝐹, 𝑒⟩⟩ InnerFiveSeg ⟨⟨𝐷, 𝑒⟩, ⟨𝐹, 𝐸⟩⟩ ↔ ((𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝑒, 𝐹⟩) ∧ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩)))) |
49 | | ifscgr 35321 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨⟨𝐷, 𝑒⟩, ⟨𝐹, 𝑒⟩⟩ InnerFiveSeg ⟨⟨𝐷, 𝑒⟩, ⟨𝐹, 𝐸⟩⟩ → ⟨𝑒, 𝑒⟩Cgr⟨𝑒, 𝐸⟩)) |
50 | 48, 49 | sylbird 260 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (((𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝑒, 𝐹⟩) ∧ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩)) → ⟨𝑒, 𝑒⟩Cgr⟨𝑒, 𝐸⟩)) |
51 | 16, 17, 20, 18, 20, 17, 20, 18, 33, 50 | syl333anc 1401 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ 𝑒 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐷, 𝐹⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝑒, 𝐹⟩) ∧ (⟨𝐷, 𝑒⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐹, 𝑒⟩Cgr⟨𝐹, 𝐸⟩)) → ⟨𝑒, 𝑒⟩Cgr⟨𝑒, 𝐸⟩)) |
52 | 47, 51 | syld 47 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) → ⟨𝑒, 𝑒⟩Cgr⟨𝑒, 𝐸⟩)) |
53 | | cgrid2 35280 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨𝑒, 𝑒⟩Cgr⟨𝑒, 𝐸⟩ → 𝑒 = 𝐸)) |
54 | 16, 20, 20, 33, 53 | syl13anc 1371 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (⟨𝑒, 𝑒⟩Cgr⟨𝑒, 𝐸⟩ → 𝑒 = 𝐸)) |
55 | 52, 54 | syld 47 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) → 𝑒 = 𝐸)) |
56 | 55 | imp 406 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) → 𝑒 = 𝐸) |
57 | 56, 14 | eqbrtrrd 5172 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) ∧ (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) → 𝐸 Btwn ⟨𝐷, 𝐹⟩) |
58 | 57 | expr 456 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩)) → ((𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩) → 𝐸 Btwn ⟨𝐷, 𝐹⟩)) |
59 | 58 | an32s 649 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩)) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩) → 𝐸 Btwn ⟨𝐷, 𝐹⟩)) |
60 | 59 | rexlimdva 3154 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩)) → (∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩) → 𝐸 Btwn ⟨𝐷, 𝐹⟩)) |
61 | 13, 60 | mpd 15 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩)) → 𝐸 Btwn ⟨𝐷, 𝐹⟩) |
62 | 61 | ex 412 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩) → 𝐸 Btwn ⟨𝐷, 𝐹⟩)) |