![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > compsscnvlem | Structured version Visualization version GIF version |
Description: Lemma for compsscnv 9515. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compsscnvlem | ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 = (𝐴 ∖ 𝑥)) | |
2 | difss 3966 | . . . 4 ⊢ (𝐴 ∖ 𝑥) ⊆ 𝐴 | |
3 | 1, 2 | syl6eqss 3880 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 ⊆ 𝐴) |
4 | selpw 4387 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) | |
5 | 3, 4 | sylibr 226 | . 2 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 ∈ 𝒫 𝐴) |
6 | 1 | difeq2d 3957 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝐴 ∖ 𝑦) = (𝐴 ∖ (𝐴 ∖ 𝑥))) |
7 | elpwi 4390 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
8 | 7 | adantr 474 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑥 ⊆ 𝐴) |
9 | dfss4 4090 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) | |
10 | 8, 9 | sylib 210 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) |
11 | 6, 10 | eqtr2d 2862 | . 2 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑥 = (𝐴 ∖ 𝑦)) |
12 | 5, 11 | jca 507 | 1 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∖ cdif 3795 ⊆ wss 3798 𝒫 cpw 4380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rab 3126 df-v 3416 df-dif 3801 df-in 3805 df-ss 3812 df-pw 4382 |
This theorem is referenced by: compsscnv 9515 |
Copyright terms: Public domain | W3C validator |