Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > compsscnvlem | Structured version Visualization version GIF version |
Description: Lemma for compsscnv 10126. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compsscnvlem | ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 = (𝐴 ∖ 𝑥)) | |
2 | difss 4071 | . . . 4 ⊢ (𝐴 ∖ 𝑥) ⊆ 𝐴 | |
3 | 1, 2 | eqsstrdi 3980 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 ⊆ 𝐴) |
4 | velpw 4544 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) | |
5 | 3, 4 | sylibr 233 | . 2 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 ∈ 𝒫 𝐴) |
6 | 1 | difeq2d 4062 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝐴 ∖ 𝑦) = (𝐴 ∖ (𝐴 ∖ 𝑥))) |
7 | elpwi 4548 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑥 ⊆ 𝐴) |
9 | dfss4 4198 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) | |
10 | 8, 9 | sylib 217 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) |
11 | 6, 10 | eqtr2d 2781 | . 2 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑥 = (𝐴 ∖ 𝑦)) |
12 | 5, 11 | jca 512 | 1 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∖ cdif 3889 ⊆ wss 3892 𝒫 cpw 4539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-in 3899 df-ss 3909 df-pw 4541 |
This theorem is referenced by: compsscnv 10126 |
Copyright terms: Public domain | W3C validator |