| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > compsscnvlem | Structured version Visualization version GIF version | ||
| Description: Lemma for compsscnv 10331. (Contributed by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| compsscnvlem | ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 = (𝐴 ∖ 𝑥)) | |
| 2 | difss 4102 | . . . 4 ⊢ (𝐴 ∖ 𝑥) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstrdi 3994 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 ⊆ 𝐴) |
| 4 | velpw 4571 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑦 ∈ 𝒫 𝐴) |
| 6 | 1 | difeq2d 4092 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝐴 ∖ 𝑦) = (𝐴 ∖ (𝐴 ∖ 𝑥))) |
| 7 | elpwi 4573 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑥 ⊆ 𝐴) |
| 9 | dfss4 4235 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) | |
| 10 | 8, 9 | sylib 218 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) |
| 11 | 6, 10 | eqtr2d 2766 | . 2 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → 𝑥 = (𝐴 ∖ 𝑦)) |
| 12 | 5, 11 | jca 511 | 1 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: compsscnv 10331 |
| Copyright terms: Public domain | W3C validator |