MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compsscnv Structured version   Visualization version   GIF version

Theorem compsscnv 9782
Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
compsscnv 𝐹 = 𝐹
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem compsscnv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnvopab 5964 . 2 {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
2 compss.a . . . 4 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
3 difeq2 4044 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
43cbvmptv 5133 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦))
5 df-mpt 5111 . . . 4 (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦)) = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
62, 4, 53eqtri 2825 . . 3 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
76cnveqi 5709 . 2 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
8 df-mpt 5111 . . 3 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥))}
9 compsscnvlem 9781 . . . . 5 ((𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦)) → (𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)))
10 compsscnvlem 9781 . . . . 5 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦)))
119, 10impbii 212 . . . 4 ((𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦)) ↔ (𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)))
1211opabbii 5097 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥))}
138, 2, 123eqtr4i 2831 . 2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
141, 7, 133eqtr4i 2831 1 𝐹 = 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  cdif 3878  𝒫 cpw 4497  {copab 5092  cmpt 5110  ccnv 5518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-mpt 5111  df-xp 5525  df-rel 5526  df-cnv 5527
This theorem is referenced by:  compssiso  9785  isf34lem3  9786  compss  9787  isf34lem5  9789
  Copyright terms: Public domain W3C validator