MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compsscnv Structured version   Visualization version   GIF version

Theorem compsscnv 10262
Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
compsscnv 𝐹 = 𝐹
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem compsscnv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnvopab 6083 . 2 {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
2 compss.a . . . 4 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
3 difeq2 4067 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
43cbvmptv 5193 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦))
5 df-mpt 5171 . . . 4 (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦)) = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
62, 4, 53eqtri 2758 . . 3 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
76cnveqi 5813 . 2 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
8 df-mpt 5171 . . 3 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥))}
9 compsscnvlem 10261 . . . . 5 ((𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦)) → (𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)))
10 compsscnvlem 10261 . . . . 5 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦)))
119, 10impbii 209 . . . 4 ((𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦)) ↔ (𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)))
1211opabbii 5156 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥))}
138, 2, 123eqtr4i 2764 . 2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦))}
141, 7, 133eqtr4i 2764 1 𝐹 = 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  cdif 3894  𝒫 cpw 4547  {copab 5151  cmpt 5170  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-rel 5621  df-cnv 5622
This theorem is referenced by:  compssiso  10265  isf34lem3  10266  compss  10267  isf34lem5  10269
  Copyright terms: Public domain W3C validator