![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > compsscnv | Structured version Visualization version GIF version |
Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
compsscnv | ⊢ ◡𝐹 = 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvopab 6137 | . 2 ⊢ ◡{⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} | |
2 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
3 | difeq2 4115 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
4 | 3 | cbvmptv 5260 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
5 | df-mpt 5231 | . . . 4 ⊢ (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} | |
6 | 2, 4, 5 | 3eqtri 2762 | . . 3 ⊢ 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} |
7 | 6 | cnveqi 5873 | . 2 ⊢ ◡𝐹 = ◡{⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} |
8 | df-mpt 5231 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))} | |
9 | compsscnvlem 10367 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦)) → (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))) | |
10 | compsscnvlem 10367 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) | |
11 | 9, 10 | impbii 208 | . . . 4 ⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))) |
12 | 11 | opabbii 5214 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))} |
13 | 8, 2, 12 | 3eqtr4i 2768 | . 2 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} |
14 | 1, 7, 13 | 3eqtr4i 2768 | 1 ⊢ ◡𝐹 = 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∖ cdif 3944 𝒫 cpw 4601 {copab 5209 ↦ cmpt 5230 ◡ccnv 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-mpt 5231 df-xp 5681 df-rel 5682 df-cnv 5683 |
This theorem is referenced by: compssiso 10371 isf34lem3 10372 compss 10373 isf34lem5 10375 |
Copyright terms: Public domain | W3C validator |