| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin33i | Structured version Visualization version GIF version | ||
| Description: Inference from isfin3-3 10297. (This is actually a bit stronger than isfin3-3 10297 because it does not assume 𝐹 is a set and does not use the Axiom of Infinity either.) (Contributed by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin33i | ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ∩ ran 𝐹 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin32i 10294 | . . 3 ⊢ (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ¬ ω ≼* 𝐴) |
| 3 | isf32lem11 10292 | . . . 4 ⊢ ((𝐴 ∈ FinIII ∧ (𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐴) | |
| 4 | 3 | 3exp2 1355 | . . 3 ⊢ (𝐴 ∈ FinIII → (𝐹:ω⟶𝒫 𝐴 → (∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) → (¬ ∩ ran 𝐹 ∈ ran 𝐹 → ω ≼* 𝐴)))) |
| 5 | 4 | 3imp 1110 | . 2 ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → (¬ ∩ ran 𝐹 ∈ ran 𝐹 → ω ≼* 𝐴)) |
| 6 | 2, 5 | mt3d 148 | 1 ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ∩ ran 𝐹 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 𝒫 cpw 4559 ∩ cint 4906 class class class wbr 5102 ran crn 5632 suc csuc 6322 ⟶wf 6495 ‘cfv 6499 ωcom 7822 ≼* cwdom 9493 FinIIIcfin3 10210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-wdom 9494 df-card 9868 df-fin4 10216 df-fin3 10217 |
| This theorem is referenced by: isf34lem7 10308 |
| Copyright terms: Public domain | W3C validator |