![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin33i | Structured version Visualization version GIF version |
Description: Inference from isfin3-3 10369. (This is actually a bit stronger than isfin3-3 10369 because it does not assume πΉ is a set and does not use the Axiom of Infinity either.) (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin33i | β’ ((π΄ β FinIII β§ πΉ:ΟβΆπ« π΄ β§ βπ₯ β Ο (πΉβsuc π₯) β (πΉβπ₯)) β β© ran πΉ β ran πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin32i 10366 | . . 3 β’ (π΄ β FinIII β Β¬ Ο βΌ* π΄) | |
2 | 1 | 3ad2ant1 1132 | . 2 β’ ((π΄ β FinIII β§ πΉ:ΟβΆπ« π΄ β§ βπ₯ β Ο (πΉβsuc π₯) β (πΉβπ₯)) β Β¬ Ο βΌ* π΄) |
3 | isf32lem11 10364 | . . . 4 β’ ((π΄ β FinIII β§ (πΉ:ΟβΆπ« π΄ β§ βπ₯ β Ο (πΉβsuc π₯) β (πΉβπ₯) β§ Β¬ β© ran πΉ β ran πΉ)) β Ο βΌ* π΄) | |
4 | 3 | 3exp2 1353 | . . 3 β’ (π΄ β FinIII β (πΉ:ΟβΆπ« π΄ β (βπ₯ β Ο (πΉβsuc π₯) β (πΉβπ₯) β (Β¬ β© ran πΉ β ran πΉ β Ο βΌ* π΄)))) |
5 | 4 | 3imp 1110 | . 2 β’ ((π΄ β FinIII β§ πΉ:ΟβΆπ« π΄ β§ βπ₯ β Ο (πΉβsuc π₯) β (πΉβπ₯)) β (Β¬ β© ran πΉ β ran πΉ β Ο βΌ* π΄)) |
6 | 2, 5 | mt3d 148 | 1 β’ ((π΄ β FinIII β§ πΉ:ΟβΆπ« π΄ β§ βπ₯ β Ο (πΉβsuc π₯) β (πΉβπ₯)) β β© ran πΉ β ran πΉ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ w3a 1086 β wcel 2105 βwral 3060 β wss 3948 π« cpw 4602 β© cint 4950 class class class wbr 5148 ran crn 5677 suc csuc 6366 βΆwf 6539 βcfv 6543 Οcom 7859 βΌ* cwdom 9565 FinIIIcfin3 10282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-wdom 9566 df-card 9940 df-fin4 10288 df-fin3 10289 |
This theorem is referenced by: isf34lem7 10380 |
Copyright terms: Public domain | W3C validator |