Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin33i | Structured version Visualization version GIF version |
Description: Inference from isfin3-3 10007. (This is actually a bit stronger than isfin3-3 10007 because it does not assume 𝐹 is a set and does not use the Axiom of Infinity either.) (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin33i | ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ∩ ran 𝐹 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin32i 10004 | . . 3 ⊢ (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴) | |
2 | 1 | 3ad2ant1 1135 | . 2 ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ¬ ω ≼* 𝐴) |
3 | isf32lem11 10002 | . . . 4 ⊢ ((𝐴 ∈ FinIII ∧ (𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐴) | |
4 | 3 | 3exp2 1356 | . . 3 ⊢ (𝐴 ∈ FinIII → (𝐹:ω⟶𝒫 𝐴 → (∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) → (¬ ∩ ran 𝐹 ∈ ran 𝐹 → ω ≼* 𝐴)))) |
5 | 4 | 3imp 1113 | . 2 ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → (¬ ∩ ran 𝐹 ∈ ran 𝐹 → ω ≼* 𝐴)) |
6 | 2, 5 | mt3d 150 | 1 ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ∩ ran 𝐹 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1089 ∈ wcel 2111 ∀wral 3062 ⊆ wss 3881 𝒫 cpw 4528 ∩ cint 4874 class class class wbr 5068 ran crn 5567 suc csuc 6233 ⟶wf 6394 ‘cfv 6398 ωcom 7663 ≼* cwdom 9205 FinIIIcfin3 9920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-om 7664 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-wdom 9206 df-card 9580 df-fin4 9926 df-fin3 9927 |
This theorem is referenced by: isf34lem7 10018 |
Copyright terms: Public domain | W3C validator |