Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin33i | Structured version Visualization version GIF version |
Description: Inference from isfin3-3 10124. (This is actually a bit stronger than isfin3-3 10124 because it does not assume 𝐹 is a set and does not use the Axiom of Infinity either.) (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin33i | ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ∩ ran 𝐹 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin32i 10121 | . . 3 ⊢ (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴) | |
2 | 1 | 3ad2ant1 1132 | . 2 ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ¬ ω ≼* 𝐴) |
3 | isf32lem11 10119 | . . . 4 ⊢ ((𝐴 ∈ FinIII ∧ (𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐴) | |
4 | 3 | 3exp2 1353 | . . 3 ⊢ (𝐴 ∈ FinIII → (𝐹:ω⟶𝒫 𝐴 → (∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) → (¬ ∩ ran 𝐹 ∈ ran 𝐹 → ω ≼* 𝐴)))) |
5 | 4 | 3imp 1110 | . 2 ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → (¬ ∩ ran 𝐹 ∈ ran 𝐹 → ω ≼* 𝐴)) |
6 | 2, 5 | mt3d 148 | 1 ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ∩ ran 𝐹 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 𝒫 cpw 4533 ∩ cint 4879 class class class wbr 5074 ran crn 5590 suc csuc 6268 ⟶wf 6429 ‘cfv 6433 ωcom 7712 ≼* cwdom 9323 FinIIIcfin3 10037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-wdom 9324 df-card 9697 df-fin4 10043 df-fin3 10044 |
This theorem is referenced by: isf34lem7 10135 |
Copyright terms: Public domain | W3C validator |