| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funALTVss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| Ref | Expression |
|---|---|
| funALTVss | ⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossss 38416 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) | |
| 2 | sstr2 3953 | . . . 4 ⊢ ( ≀ 𝐴 ⊆ ≀ 𝐵 → ( ≀ 𝐵 ⊆ I → ≀ 𝐴 ⊆ I )) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ( ≀ 𝐵 ⊆ I → ≀ 𝐴 ⊆ I )) |
| 4 | relss 5744 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | |
| 5 | 3, 4 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (( ≀ 𝐵 ⊆ I ∧ Rel 𝐵) → ( ≀ 𝐴 ⊆ I ∧ Rel 𝐴))) |
| 6 | dffunALTV2 38680 | . 2 ⊢ ( FunALTV 𝐵 ↔ ( ≀ 𝐵 ⊆ I ∧ Rel 𝐵)) | |
| 7 | dffunALTV2 38680 | . 2 ⊢ ( FunALTV 𝐴 ↔ ( ≀ 𝐴 ⊆ I ∧ Rel 𝐴)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3914 I cid 5532 Rel wrel 5643 ≀ ccoss 38169 FunALTV wfunALTV 38200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-coss 38402 df-cnvrefrel 38518 df-funALTV 38674 |
| This theorem is referenced by: funALTVeq 38692 disjss 38723 |
| Copyright terms: Public domain | W3C validator |