| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funALTVss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| Ref | Expression |
|---|---|
| funALTVss | ⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossss 38470 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) | |
| 2 | sstr2 3936 | . . . 4 ⊢ ( ≀ 𝐴 ⊆ ≀ 𝐵 → ( ≀ 𝐵 ⊆ I → ≀ 𝐴 ⊆ I )) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ( ≀ 𝐵 ⊆ I → ≀ 𝐴 ⊆ I )) |
| 4 | relss 5721 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | |
| 5 | 3, 4 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (( ≀ 𝐵 ⊆ I ∧ Rel 𝐵) → ( ≀ 𝐴 ⊆ I ∧ Rel 𝐴))) |
| 6 | dffunALTV2 38734 | . 2 ⊢ ( FunALTV 𝐵 ↔ ( ≀ 𝐵 ⊆ I ∧ Rel 𝐵)) | |
| 7 | dffunALTV2 38734 | . 2 ⊢ ( FunALTV 𝐴 ↔ ( ≀ 𝐴 ⊆ I ∧ Rel 𝐴)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3897 I cid 5508 Rel wrel 5619 ≀ ccoss 38223 FunALTV wfunALTV 38254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-coss 38456 df-cnvrefrel 38572 df-funALTV 38728 |
| This theorem is referenced by: funALTVeq 38746 disjss 38777 |
| Copyright terms: Public domain | W3C validator |