Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funALTVss Structured version   Visualization version   GIF version

Theorem funALTVss 38696
Description: Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
funALTVss (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))

Proof of Theorem funALTVss
StepHypRef Expression
1 cossss 38421 . . . 4 (𝐴𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵)
2 sstr2 3944 . . . 4 ( ≀ 𝐴 ⊆ ≀ 𝐵 → ( ≀ 𝐵 ⊆ I → ≀ 𝐴 ⊆ I ))
31, 2syl 17 . . 3 (𝐴𝐵 → ( ≀ 𝐵 ⊆ I → ≀ 𝐴 ⊆ I ))
4 relss 5729 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
53, 4anim12d 609 . 2 (𝐴𝐵 → (( ≀ 𝐵 ⊆ I ∧ Rel 𝐵) → ( ≀ 𝐴 ⊆ I ∧ Rel 𝐴)))
6 dffunALTV2 38685 . 2 ( FunALTV 𝐵 ↔ ( ≀ 𝐵 ⊆ I ∧ Rel 𝐵))
7 dffunALTV2 38685 . 2 ( FunALTV 𝐴 ↔ ( ≀ 𝐴 ⊆ I ∧ Rel 𝐴))
85, 6, 73imtr4g 296 1 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3905   I cid 5517  Rel wrel 5628  ccoss 38174   FunALTV wfunALTV 38205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-coss 38407  df-cnvrefrel 38523  df-funALTV 38679
This theorem is referenced by:  funALTVeq  38697  disjss  38728
  Copyright terms: Public domain W3C validator