Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funALTVss Structured version   Visualization version   GIF version

Theorem funALTVss 36111
 Description: Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
funALTVss (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))

Proof of Theorem funALTVss
StepHypRef Expression
1 cossss 35849 . . . 4 (𝐴𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵)
2 sstr2 3922 . . . 4 ( ≀ 𝐴 ⊆ ≀ 𝐵 → ( ≀ 𝐵 ⊆ I → ≀ 𝐴 ⊆ I ))
31, 2syl 17 . . 3 (𝐴𝐵 → ( ≀ 𝐵 ⊆ I → ≀ 𝐴 ⊆ I ))
4 relss 5621 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
53, 4anim12d 611 . 2 (𝐴𝐵 → (( ≀ 𝐵 ⊆ I ∧ Rel 𝐵) → ( ≀ 𝐴 ⊆ I ∧ Rel 𝐴)))
6 dffunALTV2 36100 . 2 ( FunALTV 𝐵 ↔ ( ≀ 𝐵 ⊆ I ∧ Rel 𝐵))
7 dffunALTV2 36100 . 2 ( FunALTV 𝐴 ↔ ( ≀ 𝐴 ⊆ I ∧ Rel 𝐴))
85, 6, 73imtr4g 299 1 (𝐴𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ⊆ wss 3881   I cid 5425  Rel wrel 5525   ≀ ccoss 35632   FunALTV wfunALTV 35663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5032  df-opab 5094  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-coss 35838  df-cnvrefrel 35944  df-funALTV 36094 This theorem is referenced by:  funALTVeq  36112  disjss  36143
 Copyright terms: Public domain W3C validator