![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssbr | Structured version Visualization version GIF version |
Description: Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.) |
Ref | Expression |
---|---|
ssbr | ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | ssbrd 5191 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3963 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-clel 2814 df-ss 3980 df-br 5149 |
This theorem is referenced by: ssbri 5193 coss1 5869 coss2 5870 cnvss 5886 ssrelrn 5908 ttrclss 9758 isucn2 24304 brelg 32629 cossss 38407 |
Copyright terms: Public domain | W3C validator |