| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbr | Structured version Visualization version GIF version | ||
| Description: Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.) |
| Ref | Expression |
|---|---|
| ssbr | ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | ssbrd 5167 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3931 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2810 df-ss 3948 df-br 5125 |
| This theorem is referenced by: ssbri 5169 coss1 5840 coss2 5841 cnvss 5857 ssrelrn 5879 ttrclss 9739 isucn2 24222 brelg 32594 cossss 38448 |
| Copyright terms: Public domain | W3C validator |