MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssbr Structured version   Visualization version   GIF version

Theorem ssbr 5122
Description: Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.)
Assertion
Ref Expression
ssbr (𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))

Proof of Theorem ssbr
StepHypRef Expression
1 id 22 . 2 (𝐴𝐵𝐴𝐵)
21ssbrd 5121 1 (𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3891   class class class wbr 5078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-br 5079
This theorem is referenced by:  ssbri  5123  coss1  5761  coss2  5762  cnvss  5778  ssrelrn  5800  ttrclss  9439  isucn2  23412  brelg  30928  cossss  36527
  Copyright terms: Public domain W3C validator