Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssbr | Structured version Visualization version GIF version |
Description: Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.) |
Ref | Expression |
---|---|
ssbr | ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | ssbrd 5124 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3892 class class class wbr 5081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 df-br 5082 |
This theorem is referenced by: ssbri 5126 coss1 5777 coss2 5778 cnvss 5794 ssrelrn 5816 ttrclss 9526 isucn2 23480 brelg 30998 cossss 36639 |
Copyright terms: Public domain | W3C validator |