| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbr | Structured version Visualization version GIF version | ||
| Description: Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.) |
| Ref | Expression |
|---|---|
| ssbr | ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | ssbrd 5132 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 df-ss 3914 df-br 5090 |
| This theorem is referenced by: ssbri 5134 coss1 5794 coss2 5795 cnvss 5811 ssrelrn 5833 ttrclss 9610 chnrss 18521 isucn2 24193 brelg 32590 cossss 38537 |
| Copyright terms: Public domain | W3C validator |