MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssbr Structured version   Visualization version   GIF version

Theorem ssbr 5210
Description: Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.)
Assertion
Ref Expression
ssbr (𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))

Proof of Theorem ssbr
StepHypRef Expression
1 id 22 . 2 (𝐴𝐵𝐴𝐵)
21ssbrd 5209 1 (𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3976   class class class wbr 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-clel 2819  df-ss 3993  df-br 5167
This theorem is referenced by:  ssbri  5211  coss1  5880  coss2  5881  cnvss  5897  ssrelrn  5919  ttrclss  9789  isucn2  24309  brelg  32631  cossss  38381
  Copyright terms: Public domain W3C validator