MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssbr Structured version   Visualization version   GIF version

Theorem ssbr 5183
Description: Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.)
Assertion
Ref Expression
ssbr (𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))

Proof of Theorem ssbr
StepHypRef Expression
1 id 22 . 2 (𝐴𝐵𝐴𝐵)
21ssbrd 5182 1 (𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3941   class class class wbr 5139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-in 3948  df-ss 3958  df-br 5140
This theorem is referenced by:  ssbri  5184  coss1  5846  coss2  5847  cnvss  5863  ssrelrn  5885  ttrclss  9712  isucn2  24108  brelg  32310  cossss  37789
  Copyright terms: Public domain W3C validator