| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssopab2dv | Structured version Visualization version GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| ssopab2dv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ssopab2dv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2dv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | alrimivv 1929 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝜓 → 𝜒)) |
| 3 | ssopab2 5484 | . 2 ⊢ (∀𝑥∀𝑦(𝜓 → 𝜒) → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ⊆ wss 3897 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ss 3914 df-opab 5152 |
| This theorem is referenced by: xpss12 5629 coss1 5794 coss2 5795 cnvss 5811 aceq3lem 10011 coss12d 14879 shftfval 14977 sslm 23214 ulmval 26316 mptssALT 32657 fpwrelmap 32716 cossss 38470 dicssdvh 41233 rfovcnvf1od 44045 |
| Copyright terms: Public domain | W3C validator |