Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssopab2dv | Structured version Visualization version GIF version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
ssopab2dv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ssopab2dv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2dv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | alrimivv 1931 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝜓 → 𝜒)) |
3 | ssopab2 5459 | . 2 ⊢ (∀𝑥∀𝑦(𝜓 → 𝜒) → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊆ wss 3887 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 |
This theorem is referenced by: xpss12 5604 coss1 5764 coss2 5765 cnvss 5781 aceq3lem 9876 coss12d 14683 shftfval 14781 sslm 22450 ulmval 25539 mptssALT 31012 fpwrelmap 31068 cossss 36548 dicssdvh 39200 rfovcnvf1od 41612 |
Copyright terms: Public domain | W3C validator |