Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefi | Structured version Visualization version GIF version |
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefi.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
crefi | ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐽 ∈ CovHasRef𝐴) | |
2 | simp2 1136 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ⊆ 𝐽) | |
3 | 1, 2 | sselpwd 5250 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ∈ 𝒫 𝐽) |
4 | crefi.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | iscref 31794 | . . . 4 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
6 | 5 | simprbi 497 | . . 3 ⊢ (𝐽 ∈ CovHasRef𝐴 → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
7 | 6 | 3ad2ant1 1132 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
8 | simp3 1137 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝑋 = ∪ 𝐶) | |
9 | unieq 4850 | . . . . 5 ⊢ (𝑦 = 𝐶 → ∪ 𝑦 = ∪ 𝐶) | |
10 | 9 | eqeq2d 2749 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐶)) |
11 | breq2 5078 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑧Ref𝑦 ↔ 𝑧Ref𝐶)) | |
12 | 11 | rexbidv 3226 | . . . 4 ⊢ (𝑦 = 𝐶 → (∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶)) |
13 | 10, 12 | imbi12d 345 | . . 3 ⊢ (𝑦 = 𝐶 → ((𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) ↔ (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
14 | 13 | rspcv 3557 | . 2 ⊢ (𝐶 ∈ 𝒫 𝐽 → (∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) → (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
15 | 3, 7, 8, 14 | syl3c 66 | 1 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 Topctop 22042 Refcref 22653 CovHasRefccref 31792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-cref 31793 |
This theorem is referenced by: crefdf 31798 |
Copyright terms: Public domain | W3C validator |