Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crefi Structured version   Visualization version   GIF version

Theorem crefi 30512
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypothesis
Ref Expression
crefi.x 𝑋 = 𝐽
Assertion
Ref Expression
crefi ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑧,𝐶
Allowed substitution hint:   𝑋(𝑧)

Proof of Theorem crefi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1127 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝐽 ∈ CovHasRef𝐴)
2 simp2 1128 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝐶𝐽)
31, 2sselpwd 5044 . 2 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝐶 ∈ 𝒫 𝐽)
4 crefi.x . . . . 5 𝑋 = 𝐽
54iscref 30509 . . . 4 (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
65simprbi 492 . . 3 (𝐽 ∈ CovHasRef𝐴 → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦))
763ad2ant1 1124 . 2 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦))
8 simp3 1129 . 2 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝑋 = 𝐶)
9 unieq 4679 . . . . 5 (𝑦 = 𝐶 𝑦 = 𝐶)
109eqeq2d 2788 . . . 4 (𝑦 = 𝐶 → (𝑋 = 𝑦𝑋 = 𝐶))
11 breq2 4890 . . . . 5 (𝑦 = 𝐶 → (𝑧Ref𝑦𝑧Ref𝐶))
1211rexbidv 3237 . . . 4 (𝑦 = 𝐶 → (∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶))
1310, 12imbi12d 336 . . 3 (𝑦 = 𝐶 → ((𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦) ↔ (𝑋 = 𝐶 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)))
1413rspcv 3507 . 2 (𝐶 ∈ 𝒫 𝐽 → (∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦) → (𝑋 = 𝐶 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)))
153, 7, 8, 14syl3c 66 1 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091  cin 3791  wss 3792  𝒫 cpw 4379   cuni 4671   class class class wbr 4886  Topctop 21105  Refcref 21714  CovHasRefccref 30507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-cref 30508
This theorem is referenced by:  crefdf  30513
  Copyright terms: Public domain W3C validator