| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crefi | Structured version Visualization version GIF version | ||
| Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| Ref | Expression |
|---|---|
| crefi.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| crefi | ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐽 ∈ CovHasRef𝐴) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ⊆ 𝐽) | |
| 3 | 1, 2 | sselpwd 5268 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ∈ 𝒫 𝐽) |
| 4 | crefi.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | iscref 33878 | . . . 4 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
| 6 | 5 | simprbi 496 | . . 3 ⊢ (𝐽 ∈ CovHasRef𝐴 → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝑋 = ∪ 𝐶) | |
| 9 | unieq 4869 | . . . . 5 ⊢ (𝑦 = 𝐶 → ∪ 𝑦 = ∪ 𝐶) | |
| 10 | 9 | eqeq2d 2744 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐶)) |
| 11 | breq2 5097 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑧Ref𝑦 ↔ 𝑧Ref𝐶)) | |
| 12 | 11 | rexbidv 3157 | . . . 4 ⊢ (𝑦 = 𝐶 → (∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶)) |
| 13 | 10, 12 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐶 → ((𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) ↔ (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
| 14 | 13 | rspcv 3569 | . 2 ⊢ (𝐶 ∈ 𝒫 𝐽 → (∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) → (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
| 15 | 3, 7, 8, 14 | syl3c 66 | 1 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 class class class wbr 5093 Topctop 22809 Refcref 23418 CovHasRefccref 33876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-cref 33877 |
| This theorem is referenced by: crefdf 33882 |
| Copyright terms: Public domain | W3C validator |