![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefi | Structured version Visualization version GIF version |
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefi.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
crefi | ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1127 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐽 ∈ CovHasRef𝐴) | |
2 | simp2 1128 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ⊆ 𝐽) | |
3 | 1, 2 | sselpwd 5044 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ∈ 𝒫 𝐽) |
4 | crefi.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | iscref 30509 | . . . 4 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
6 | 5 | simprbi 492 | . . 3 ⊢ (𝐽 ∈ CovHasRef𝐴 → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
7 | 6 | 3ad2ant1 1124 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
8 | simp3 1129 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝑋 = ∪ 𝐶) | |
9 | unieq 4679 | . . . . 5 ⊢ (𝑦 = 𝐶 → ∪ 𝑦 = ∪ 𝐶) | |
10 | 9 | eqeq2d 2788 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐶)) |
11 | breq2 4890 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑧Ref𝑦 ↔ 𝑧Ref𝐶)) | |
12 | 11 | rexbidv 3237 | . . . 4 ⊢ (𝑦 = 𝐶 → (∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶)) |
13 | 10, 12 | imbi12d 336 | . . 3 ⊢ (𝑦 = 𝐶 → ((𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) ↔ (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
14 | 13 | rspcv 3507 | . 2 ⊢ (𝐶 ∈ 𝒫 𝐽 → (∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) → (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
15 | 3, 7, 8, 14 | syl3c 66 | 1 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃wrex 3091 ∩ cin 3791 ⊆ wss 3792 𝒫 cpw 4379 ∪ cuni 4671 class class class wbr 4886 Topctop 21105 Refcref 21714 CovHasRefccref 30507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-cref 30508 |
This theorem is referenced by: crefdf 30513 |
Copyright terms: Public domain | W3C validator |