Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crefi Structured version   Visualization version   GIF version

Theorem crefi 31699
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypothesis
Ref Expression
crefi.x 𝑋 = 𝐽
Assertion
Ref Expression
crefi ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑧,𝐶
Allowed substitution hint:   𝑋(𝑧)

Proof of Theorem crefi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝐽 ∈ CovHasRef𝐴)
2 simp2 1135 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝐶𝐽)
31, 2sselpwd 5245 . 2 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝐶 ∈ 𝒫 𝐽)
4 crefi.x . . . . 5 𝑋 = 𝐽
54iscref 31696 . . . 4 (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
65simprbi 496 . . 3 (𝐽 ∈ CovHasRef𝐴 → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦))
763ad2ant1 1131 . 2 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦))
8 simp3 1136 . 2 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → 𝑋 = 𝐶)
9 unieq 4847 . . . . 5 (𝑦 = 𝐶 𝑦 = 𝐶)
109eqeq2d 2749 . . . 4 (𝑦 = 𝐶 → (𝑋 = 𝑦𝑋 = 𝐶))
11 breq2 5074 . . . . 5 (𝑦 = 𝐶 → (𝑧Ref𝑦𝑧Ref𝐶))
1211rexbidv 3225 . . . 4 (𝑦 = 𝐶 → (∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶))
1310, 12imbi12d 344 . . 3 (𝑦 = 𝐶 → ((𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦) ↔ (𝑋 = 𝐶 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)))
1413rspcv 3547 . 2 (𝐶 ∈ 𝒫 𝐽 → (∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦) → (𝑋 = 𝐶 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)))
153, 7, 8, 14syl3c 66 1 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  Topctop 21950  Refcref 22561  CovHasRefccref 31694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-cref 31695
This theorem is referenced by:  crefdf  31700
  Copyright terms: Public domain W3C validator