Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem5VD Structured version   Visualization version   GIF version

Theorem onfrALTlem5VD 39932
Description: Virtual deduction proof of onfrALTlem5 39579. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 39579 is onfrALTlem5VD 39932 without virtual deductions and was automatically derived from onfrALTlem5VD 39932.
1:: 𝑎 ∈ V
2:1: (𝑎𝑥) ∈ V
3:2: ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 𝑥) = ∅)
4:3: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎𝑥) = ∅)
5:: ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥 ) = ∅)
6:4,5: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
7:2: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
8:: (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
9:8: 𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
10:2,9: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
11:7,10: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅)
12:6,11: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ ( 𝑎𝑥) ≠ ∅)
13:2: ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥 ) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
14:12,13: (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎 𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎 𝑥) ∧ (𝑎𝑥) ≠ ∅))
15:2: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
16:15,14: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
17:2: (𝑎𝑥) / 𝑏(𝑏𝑦) = ( (𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
18:2: (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
19:2: (𝑎𝑥) / 𝑏𝑦 = 𝑦
20:18,19: ((𝑎𝑥) / 𝑏𝑏(𝑎 𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
21:17,20: (𝑎𝑥) / 𝑏(𝑏𝑦) = (( 𝑎𝑥) ∩ 𝑦)
22:2: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏 ∅)
23:2: (𝑎𝑥) / 𝑏∅ = ∅
24:21,23: ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
25:22,24: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
26:2: ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 (𝑎𝑥))
27:25,26: (([(𝑎𝑥) / 𝑏]𝑦𝑏[ (𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ (( 𝑎𝑥) ∩ 𝑦) = ∅))
28:2: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
29:27,28: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
30:29: 𝑦([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
31:30: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅))
32:: (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅ ))
33:31,32: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
34:2: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ ( 𝑏𝑦) = ∅))
35:33,34: ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅)
36:: (∃𝑦𝑏(𝑏𝑦) = ∅ ↔ ∃𝑦 (𝑦𝑏 ∧ (𝑏𝑦) = ∅))
37:36: 𝑏(∃𝑦𝑏(𝑏𝑦) = ∅ ↔ 𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
38:2,37: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
39:35,38: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
40:16,39: (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
41:2: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ ([(𝑎 𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏𝑦) = ∅))
qed:40,41: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ (((𝑎 𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥 )((𝑎𝑥) ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem5VD ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Distinct variable groups:   𝑎,𝑏,𝑦   𝑥,𝑏,𝑦

Proof of Theorem onfrALTlem5VD
StepHypRef Expression
1 vex 3417 . . . 4 𝑎 ∈ V
21inex1 5024 . . 3 (𝑎𝑥) ∈ V
3 sbcimg 3704 . . 3 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅)))
42, 3e0a 39819 . 2 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅))
5 sbcan 3705 . . . 4 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
6 sseq1 3851 . . . . . 6 (𝑏 = (𝑎𝑥) → (𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥)))
72, 6sbcie 3697 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
8 df-ne 3000 . . . . . . 7 (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
98sbcbii 3718 . . . . . 6 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
10 sbcng 3703 . . . . . . . 8 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅ ↔ ¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅))
1110bicomd 215 . . . . . . 7 ((𝑎𝑥) ∈ V → (¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅))
122, 11e0a 39819 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
13 eqsbc3 3702 . . . . . . . 8 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅))
142, 13e0a 39819 . . . . . . 7 ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅)
1514necon3bbii 3046 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
169, 12, 153bitr2i 291 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ (𝑎𝑥) ≠ ∅)
177, 16anbi12i 620 . . . 4 (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
185, 17bitri 267 . . 3 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
19 df-rex 3123 . . . . 5 (∃𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
2019sbcbii 3718 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
21 sbcan 3705 . . . . . . 7 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
22 sbcel2gv 3722 . . . . . . . . 9 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥)))
232, 22e0a 39819 . . . . . . . 8 ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥))
24 sbceqg 4208 . . . . . . . . . 10 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅))
252, 24e0a 39819 . . . . . . . . 9 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅)
26 csbin 4235 . . . . . . . . . . 11 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
27 csbvarg 4227 . . . . . . . . . . . . 13 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥))
282, 27e0a 39819 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
29 csbconstg 3770 . . . . . . . . . . . . 13 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑦 = 𝑦)
302, 29e0a 39819 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏𝑦 = 𝑦
3128, 30ineq12i 4039 . . . . . . . . . . 11 ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
3226, 31eqtri 2849 . . . . . . . . . 10 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
33 csb0 4206 . . . . . . . . . 10 (𝑎𝑥) / 𝑏∅ = ∅
3432, 33eqeq12i 2839 . . . . . . . . 9 ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
3525, 34bitri 267 . . . . . . . 8 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
3623, 35anbi12i 620 . . . . . . 7 (([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
3721, 36bitri 267 . . . . . 6 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
3837exbii 1947 . . . . 5 (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
39 sbcex2 3713 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅))
40 df-rex 3123 . . . . 5 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
4138, 39, 403bitr4i 295 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
4220, 41bitri 267 . . 3 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
4318, 42imbi12i 342 . 2 (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
444, 43bitri 267 1 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1656  wex 1878  wcel 2164  wne 2999  wrex 3118  Vcvv 3414  [wsbc 3662  csb 3757  cin 3797  wss 3798  c0 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-in 3805  df-ss 3812  df-nul 4145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator