Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem5VD Structured version   Visualization version   GIF version

Theorem onfrALTlem5VD 44843
Description: Virtual deduction proof of onfrALTlem5 44500. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 44500 is onfrALTlem5VD 44843 without virtual deductions and was automatically derived from onfrALTlem5VD 44843.
1:: 𝑎 ∈ V
2:1: (𝑎𝑥) ∈ V
3:2: ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 𝑥) = ∅)
4:3: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎𝑥) = ∅)
5:: ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥 ) = ∅)
6:4,5: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
7:2: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
8:: (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
9:8: 𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
10:2,9: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
11:7,10: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅)
12:6,11: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ ( 𝑎𝑥) ≠ ∅)
13:2: ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥 ) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
14:12,13: (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎 𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎 𝑥) ∧ (𝑎𝑥) ≠ ∅))
15:2: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
16:15,14: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
17:2: (𝑎𝑥) / 𝑏(𝑏𝑦) = ( (𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
18:2: (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
19:2: (𝑎𝑥) / 𝑏𝑦 = 𝑦
20:18,19: ((𝑎𝑥) / 𝑏𝑏(𝑎 𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
21:17,20: (𝑎𝑥) / 𝑏(𝑏𝑦) = (( 𝑎𝑥) ∩ 𝑦)
22:2: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏 ∅)
23:2: (𝑎𝑥) / 𝑏∅ = ∅
24:21,23: ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
25:22,24: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
26:2: ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 (𝑎𝑥))
27:25,26: (([(𝑎𝑥) / 𝑏]𝑦𝑏[ (𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ (( 𝑎𝑥) ∩ 𝑦) = ∅))
28:2: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
29:27,28: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
30:29: 𝑦([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
31:30: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅))
32:: (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅ ))
33:31,32: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
34:2: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ ( 𝑏𝑦) = ∅))
35:33,34: ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅)
36:: (∃𝑦𝑏(𝑏𝑦) = ∅ ↔ ∃𝑦 (𝑦𝑏 ∧ (𝑏𝑦) = ∅))
37:36: 𝑏(∃𝑦𝑏(𝑏𝑦) = ∅ ↔ 𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
38:2,37: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
39:35,38: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
40:16,39: (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
41:2: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ ([(𝑎 𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏𝑦) = ∅))
qed:40,41: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ (((𝑎 𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥 )((𝑎𝑥) ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem5VD ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Distinct variable groups:   𝑎,𝑏,𝑦   𝑥,𝑏,𝑦

Proof of Theorem onfrALTlem5VD
StepHypRef Expression
1 vex 3461 . . . 4 𝑎 ∈ V
21inex1 5285 . . 3 (𝑎𝑥) ∈ V
3 sbcimg 3812 . . 3 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅)))
42, 3e0a 44730 . 2 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅))
5 sbcan 3813 . . . 4 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
6 sseq1 3982 . . . . . 6 (𝑏 = (𝑎𝑥) → (𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥)))
72, 6sbcie 3805 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
8 df-ne 2932 . . . . . . 7 (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
98sbcbii 3820 . . . . . 6 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
10 sbcng 3811 . . . . . . . 8 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅ ↔ ¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅))
1110bicomd 223 . . . . . . 7 ((𝑎𝑥) ∈ V → (¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅))
122, 11e0a 44730 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
13 eqsbc1 3810 . . . . . . . 8 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅))
142, 13e0a 44730 . . . . . . 7 ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅)
1514necon3bbii 2978 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
169, 12, 153bitr2i 299 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ (𝑎𝑥) ≠ ∅)
177, 16anbi12i 628 . . . 4 (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
185, 17bitri 275 . . 3 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
19 df-rex 3060 . . . . 5 (∃𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
2019sbcbii 3820 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
21 sbcan 3813 . . . . . . 7 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
22 sbcel2gv 3830 . . . . . . . . 9 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥)))
232, 22e0a 44730 . . . . . . . 8 ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥))
24 sbceqg 4385 . . . . . . . . . 10 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅))
252, 24e0a 44730 . . . . . . . . 9 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅)
26 csbin 4415 . . . . . . . . . . 11 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
27 csbvarg 4407 . . . . . . . . . . . . 13 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥))
282, 27e0a 44730 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
29 csbconstg 3891 . . . . . . . . . . . . 13 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑦 = 𝑦)
302, 29e0a 44730 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏𝑦 = 𝑦
3128, 30ineq12i 4191 . . . . . . . . . . 11 ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
3226, 31eqtri 2757 . . . . . . . . . 10 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
33 csb0 4383 . . . . . . . . . 10 (𝑎𝑥) / 𝑏∅ = ∅
3432, 33eqeq12i 2752 . . . . . . . . 9 ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
3525, 34bitri 275 . . . . . . . 8 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
3623, 35anbi12i 628 . . . . . . 7 (([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
3721, 36bitri 275 . . . . . 6 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
3837exbii 1847 . . . . 5 (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
39 sbcex2 3824 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅))
40 df-rex 3060 . . . . 5 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
4138, 39, 403bitr4i 303 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
4220, 41bitri 275 . . 3 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
4318, 42imbi12i 350 . 2 (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
444, 43bitri 275 1 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  wrex 3059  Vcvv 3457  [wsbc 3763  csb 3872  cin 3923  wss 3924  c0 4306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-in 3931  df-ss 3941  df-nul 4307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator