Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem4 Structured version   Visualization version   GIF version

Theorem onfrALTlem4 44533
Description: Lemma for onfrALT 44539. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem4 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
Distinct variable group:   𝑥,𝑎

Proof of Theorem onfrALTlem4
StepHypRef Expression
1 sbcan 3803 . 2 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥](𝑎𝑥) = ∅))
2 sbcel1v 3819 . . 3 ([𝑦 / 𝑥]𝑥𝑎𝑦𝑎)
3 vex 3451 . . . . 5 𝑦 ∈ V
4 sbceqg 4375 . . . . 5 (𝑦 ∈ V → ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ 𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅))
53, 4ax-mp 5 . . . 4 ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ 𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅)
6 csbin 4405 . . . . . 6 𝑦 / 𝑥(𝑎𝑥) = (𝑦 / 𝑥𝑎𝑦 / 𝑥𝑥)
7 csbconstg 3881 . . . . . . . 8 (𝑦 ∈ V → 𝑦 / 𝑥𝑎 = 𝑎)
83, 7ax-mp 5 . . . . . . 7 𝑦 / 𝑥𝑎 = 𝑎
9 csbvarg 4397 . . . . . . . 8 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
103, 9ax-mp 5 . . . . . . 7 𝑦 / 𝑥𝑥 = 𝑦
118, 10ineq12i 4181 . . . . . 6 (𝑦 / 𝑥𝑎𝑦 / 𝑥𝑥) = (𝑎𝑦)
126, 11eqtri 2752 . . . . 5 𝑦 / 𝑥(𝑎𝑥) = (𝑎𝑦)
13 csb0 4373 . . . . 5 𝑦 / 𝑥∅ = ∅
1412, 13eqeq12i 2747 . . . 4 (𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅ ↔ (𝑎𝑦) = ∅)
155, 14bitri 275 . . 3 ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ (𝑎𝑦) = ∅)
162, 15anbi12i 628 . 2 (([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥](𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
171, 16bitri 275 1 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  [wsbc 3753  csb 3862  cin 3913  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-in 3921  df-nul 4297
This theorem is referenced by:  onfrALTlem1  44538  onfrALTlem1VD  44879
  Copyright terms: Public domain W3C validator