Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem4 Structured version   Visualization version   GIF version

Theorem onfrALTlem4 44554
Description: Lemma for onfrALT 44560. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem4 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
Distinct variable group:   𝑥,𝑎

Proof of Theorem onfrALTlem4
StepHypRef Expression
1 sbcan 3845 . 2 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥](𝑎𝑥) = ∅))
2 sbcel1v 3863 . . 3 ([𝑦 / 𝑥]𝑥𝑎𝑦𝑎)
3 vex 3483 . . . . 5 𝑦 ∈ V
4 sbceqg 4419 . . . . 5 (𝑦 ∈ V → ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ 𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅))
53, 4ax-mp 5 . . . 4 ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ 𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅)
6 csbin 4449 . . . . . 6 𝑦 / 𝑥(𝑎𝑥) = (𝑦 / 𝑥𝑎𝑦 / 𝑥𝑥)
7 csbconstg 3928 . . . . . . . 8 (𝑦 ∈ V → 𝑦 / 𝑥𝑎 = 𝑎)
83, 7ax-mp 5 . . . . . . 7 𝑦 / 𝑥𝑎 = 𝑎
9 csbvarg 4441 . . . . . . . 8 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
103, 9ax-mp 5 . . . . . . 7 𝑦 / 𝑥𝑥 = 𝑦
118, 10ineq12i 4227 . . . . . 6 (𝑦 / 𝑥𝑎𝑦 / 𝑥𝑥) = (𝑎𝑦)
126, 11eqtri 2764 . . . . 5 𝑦 / 𝑥(𝑎𝑥) = (𝑎𝑦)
13 csb0 4417 . . . . 5 𝑦 / 𝑥∅ = ∅
1412, 13eqeq12i 2754 . . . 4 (𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅ ↔ (𝑎𝑦) = ∅)
155, 14bitri 275 . . 3 ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ (𝑎𝑦) = ∅)
162, 15anbi12i 628 . 2 (([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥](𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
171, 16bitri 275 1 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1538  wcel 2107  Vcvv 3479  [wsbc 3792  csb 3909  cin 3963  c0 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-in 3971  df-nul 4341
This theorem is referenced by:  onfrALTlem1  44559  onfrALTlem1VD  44901
  Copyright terms: Public domain W3C validator