| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onfrALTlem4VD | Structured version Visualization version GIF version | ||
Description: Virtual deduction proof of onfrALTlem4 44506.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem4 44506 is onfrALTlem4VD 44848 without virtual deductions and was
automatically derived from onfrALTlem4VD 44848.
|
| Ref | Expression |
|---|---|
| onfrALTlem4VD | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcan 3800 | . 2 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅)) | |
| 2 | sbcel1v 3816 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎) | |
| 3 | sbceqg 4371 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅)) | |
| 4 | 3 | elv 3449 | . . . 4 ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅) |
| 5 | csbin 4401 | . . . . . 6 ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (⦋𝑦 / 𝑥⦌𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) | |
| 6 | csbconstg 3878 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑎 = 𝑎) | |
| 7 | 6 | elv 3449 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑎 = 𝑎 |
| 8 | vex 3448 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 9 | 8 | csbvargi 4394 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
| 10 | 7, 9 | ineq12i 4177 | . . . . . 6 ⊢ (⦋𝑦 / 𝑥⦌𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) = (𝑎 ∩ 𝑦) |
| 11 | 5, 10 | eqtri 2752 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (𝑎 ∩ 𝑦) |
| 12 | csb0 4369 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌∅ = ∅ | |
| 13 | 11, 12 | eqeq12i 2747 | . . . 4 ⊢ (⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅ ↔ (𝑎 ∩ 𝑦) = ∅) |
| 14 | 4, 13 | bitri 275 | . . 3 ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ (𝑎 ∩ 𝑦) = ∅) |
| 15 | 2, 14 | anbi12i 628 | . 2 ⊢ (([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
| 16 | 1, 15 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 Vcvv 3444 [wsbc 3750 ⦋csb 3859 ∩ cin 3910 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-in 3918 df-nul 4293 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |