![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onfrALTlem4VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of onfrALTlem4 44455.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem4 44455 is onfrALTlem4VD 44798 without virtual deductions and was
automatically derived from onfrALTlem4VD 44798.
|
Ref | Expression |
---|---|
onfrALTlem4VD | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcan 3851 | . 2 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅)) | |
2 | sbcel1v 3869 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎) | |
3 | sbceqg 4431 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅)) | |
4 | 3 | elv 3488 | . . . 4 ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅) |
5 | csbin 4461 | . . . . . 6 ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (⦋𝑦 / 𝑥⦌𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) | |
6 | csbconstg 3934 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑎 = 𝑎) | |
7 | 6 | elv 3488 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑎 = 𝑎 |
8 | vex 3486 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
9 | 8 | csbvargi 4454 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
10 | 7, 9 | ineq12i 4233 | . . . . . 6 ⊢ (⦋𝑦 / 𝑥⦌𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) = (𝑎 ∩ 𝑦) |
11 | 5, 10 | eqtri 2762 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (𝑎 ∩ 𝑦) |
12 | csb0 4429 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌∅ = ∅ | |
13 | 11, 12 | eqeq12i 2752 | . . . 4 ⊢ (⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅ ↔ (𝑎 ∩ 𝑦) = ∅) |
14 | 4, 13 | bitri 275 | . . 3 ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ (𝑎 ∩ 𝑦) = ∅) |
15 | 2, 14 | anbi12i 627 | . 2 ⊢ (([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
16 | 1, 15 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 Vcvv 3482 [wsbc 3798 ⦋csb 3915 ∩ cin 3969 ∅c0 4347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-in 3977 df-nul 4348 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |