Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem4VD Structured version   Visualization version   GIF version

Theorem onfrALTlem4VD 42506
Description: Virtual deduction proof of onfrALTlem4 42163. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem4 42163 is onfrALTlem4VD 42506 without virtual deductions and was automatically derived from onfrALTlem4VD 42506.
1:: 𝑦 ∈ V
2:1: ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ 𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅)
3:1: 𝑦 / 𝑥(𝑎𝑥) = (𝑦 / 𝑥 𝑎𝑦 / 𝑥𝑥)
4:1: 𝑦 / 𝑥𝑎 = 𝑎
5:1: 𝑦 / 𝑥𝑥 = 𝑦
6:4,5: (𝑦 / 𝑥𝑎𝑦 / 𝑥𝑥) = ( 𝑎𝑦)
7:3,6: 𝑦 / 𝑥(𝑎𝑥) = (𝑎𝑦)
8:1: 𝑦 / 𝑥∅ = ∅
9:7,8: (𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥 ∅ ↔ (𝑎𝑦) = ∅)
10:2,9: ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ (𝑎 𝑦) = ∅)
11:1: ([𝑦 / 𝑥]𝑥𝑎𝑦𝑎)
12:11,10: (([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥]( 𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
13:1: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥](𝑎𝑥) = ∅))
qed:13,12: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem4VD ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
Distinct variable group:   𝑥,𝑎

Proof of Theorem onfrALTlem4VD
StepHypRef Expression
1 sbcan 3768 . 2 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥](𝑎𝑥) = ∅))
2 sbcel1v 3787 . . 3 ([𝑦 / 𝑥]𝑥𝑎𝑦𝑎)
3 sbceqg 4343 . . . . 5 (𝑦 ∈ V → ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ 𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅))
43elv 3438 . . . 4 ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ 𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅)
5 csbin 4373 . . . . . 6 𝑦 / 𝑥(𝑎𝑥) = (𝑦 / 𝑥𝑎𝑦 / 𝑥𝑥)
6 csbconstg 3851 . . . . . . . 8 (𝑦 ∈ V → 𝑦 / 𝑥𝑎 = 𝑎)
76elv 3438 . . . . . . 7 𝑦 / 𝑥𝑎 = 𝑎
8 vex 3436 . . . . . . . 8 𝑦 ∈ V
98csbvargi 4366 . . . . . . 7 𝑦 / 𝑥𝑥 = 𝑦
107, 9ineq12i 4144 . . . . . 6 (𝑦 / 𝑥𝑎𝑦 / 𝑥𝑥) = (𝑎𝑦)
115, 10eqtri 2766 . . . . 5 𝑦 / 𝑥(𝑎𝑥) = (𝑎𝑦)
12 csb0 4341 . . . . 5 𝑦 / 𝑥∅ = ∅
1311, 12eqeq12i 2756 . . . 4 (𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅ ↔ (𝑎𝑦) = ∅)
144, 13bitri 274 . . 3 ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ (𝑎𝑦) = ∅)
152, 14anbi12i 627 . 2 (([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥](𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
161, 15bitri 274 1 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  Vcvv 3432  [wsbc 3716  csb 3832  cin 3886  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-in 3894  df-nul 4257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator