![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbco | Structured version Visualization version GIF version |
Description: Composition law for chained substitutions into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbco | ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3812 | . . . . . 6 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
2 | 1 | abeq2i 2917 | . . . . 5 ⊢ (𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝑦 / 𝑥]𝑧 ∈ 𝐵) |
3 | 2 | sbcbii 3757 | . . . 4 ⊢ ([𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵) |
4 | sbcco 3729 | . . . 4 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) | |
5 | 3, 4 | bitri 276 | . . 3 ⊢ ([𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
6 | 5 | abbii 2861 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵} = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} |
7 | df-csb 3812 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵} | |
8 | df-csb 3812 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} | |
9 | 6, 7, 8 | 3eqtr4i 2829 | 1 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 {cab 2775 [wsbc 3706 ⦋csb 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-v 3439 df-sbc 3707 df-csb 3812 |
This theorem is referenced by: csbnest1g 4296 csbvarg 4298 fvmpocurryd 7788 zsum 14908 fsum 14910 fsumsplitf 14931 zprod 15124 fprod 15128 gsumply1eq 20156 f1od2 30145 bj-csbsn 33792 sbccom2 34935 disjinfi 40994 climinf2mpt 41537 climinfmpt 41538 dvmptmulf 41763 dvmptfprod 41771 |
Copyright terms: Public domain | W3C validator |