Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbiedOLD | Structured version Visualization version GIF version |
Description: Obsolete version of csbied 3881 as of 15-Oct-2024. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
csbiedOLD.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbiedOLD.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbiedOLD | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfcvd 2905 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐶) | |
3 | csbiedOLD.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | csbiedOLD.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
5 | 1, 2, 3, 4 | csbiedf 3874 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⦋csb 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-v 3443 df-sbc 3728 df-csb 3844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |