MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiedOLD Structured version   Visualization version   GIF version

Theorem csbiedOLD 3947
Description: Obsolete version of csbied 3946 as of 15-Oct-2024. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
csbiedOLD.1 (𝜑𝐴𝑉)
csbiedOLD.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
csbiedOLD (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbiedOLD
StepHypRef Expression
1 nfv 1912 . 2 𝑥𝜑
2 nfcvd 2904 . 2 (𝜑𝑥𝐶)
3 csbiedOLD.1 . 2 (𝜑𝐴𝑉)
4 csbiedOLD.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
51, 2, 3, 4csbiedf 3939 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  csb 3908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-v 3480  df-sbc 3792  df-csb 3909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator