MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbied2 Structured version   Visualization version   GIF version

Theorem csbied2 3899
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
csbied2.1 (𝜑𝐴𝑉)
csbied2.2 (𝜑𝐴 = 𝐵)
csbied2.3 ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
csbied2 (𝜑𝐴 / 𝑥𝐶 = 𝐷)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbied2
StepHypRef Expression
1 csbied2.1 . 2 (𝜑𝐴𝑉)
2 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
3 csbied2.2 . . . 4 (𝜑𝐴 = 𝐵)
42, 3sylan9eqr 2786 . . 3 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐵)
5 csbied2.3 . . 3 ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)
64, 5syldan 591 . 2 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)
71, 6csbied 3898 1 (𝜑𝐴 / 𝑥𝐶 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3754  df-csb 3863
This theorem is referenced by:  prdsval  17418  cidfval  17637  monfval  17694  idfuval  17838  isnat  17912  fucco  17927  catcval  18062  xpcval  18138  1stfval  18152  2ndfval  18155  prfval  18160  evlf2  18179  curfval  18184  hofval  18213  ipoval  18489  mntoval  32908  mgcoval  32912  erlval  33209  rlocval  33210  poimirlem2  37616  rngcvalALTV  48253  ringcvalALTV  48277  upfval  49165  swapfval  49251  fucofvalg  49307  fuco21  49325  prcofvalg  49365  lanfval  49602  ranfval  49603
  Copyright terms: Public domain W3C validator