![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbied2 | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
csbied2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbied2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
csbied2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
csbied2 | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbied2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | csbied2.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | sylan9eqr 2836 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
5 | csbied2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) | |
6 | 4, 5 | syldan 582 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
7 | 1, 6 | csbied 3817 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ⦋csb 3788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-v 3417 df-sbc 3684 df-csb 3789 |
This theorem is referenced by: prdsval 16587 cidfval 16808 monfval 16863 idfuval 17007 isnat 17078 fucco 17093 catcval 17217 xpcval 17288 1stfval 17302 2ndfval 17305 prfval 17310 evlf2 17329 curfval 17334 hofval 17363 ipoval 17625 poimirlem2 34335 rngcvalALTV 43597 ringcvalALTV 43643 |
Copyright terms: Public domain | W3C validator |