![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbied2 | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
csbied2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbied2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
csbied2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
csbied2 | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbied2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | csbied2.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | sylan9eqr 2802 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
5 | csbied2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) | |
6 | 4, 5 | syldan 590 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
7 | 1, 6 | csbied 3959 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: prdsval 17515 cidfval 17734 monfval 17793 idfuval 17940 isnat 18015 fucco 18032 catcval 18167 xpcval 18246 1stfval 18260 2ndfval 18263 prfval 18268 evlf2 18288 curfval 18293 hofval 18322 ipoval 18600 mntoval 32955 mgcoval 32959 erlval 33230 rlocval 33231 poimirlem2 37582 rngcvalALTV 47988 ringcvalALTV 48012 |
Copyright terms: Public domain | W3C validator |