| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbied2 | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| csbied2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbied2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| csbied2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| csbied2 | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbied2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 3 | csbied2.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | sylan9eqr 2790 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
| 5 | csbied2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) | |
| 6 | 4, 5 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
| 7 | 1, 6 | csbied 3882 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⦋csb 3846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3738 df-csb 3847 |
| This theorem is referenced by: prdsval 17363 cidfval 17586 monfval 17643 idfuval 17787 isnat 17861 fucco 17876 catcval 18011 xpcval 18087 1stfval 18101 2ndfval 18104 prfval 18109 evlf2 18128 curfval 18133 hofval 18162 ipoval 18440 mntoval 32972 mgcoval 32976 erlval 33234 rlocval 33235 poimirlem2 37685 rngcvalALTV 48392 ringcvalALTV 48416 upfval 49304 swapfval 49390 fucofvalg 49446 fuco21 49464 prcofvalg 49504 lanfval 49741 ranfval 49742 |
| Copyright terms: Public domain | W3C validator |