MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbied2 Structured version   Visualization version   GIF version

Theorem csbied2 3961
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
csbied2.1 (𝜑𝐴𝑉)
csbied2.2 (𝜑𝐴 = 𝐵)
csbied2.3 ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
csbied2 (𝜑𝐴 / 𝑥𝐶 = 𝐷)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbied2
StepHypRef Expression
1 csbied2.1 . 2 (𝜑𝐴𝑉)
2 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
3 csbied2.2 . . . 4 (𝜑𝐴 = 𝐵)
42, 3sylan9eqr 2802 . . 3 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐵)
5 csbied2.3 . . 3 ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)
64, 5syldan 590 . 2 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)
71, 6csbied 3959 1 (𝜑𝐴 / 𝑥𝐶 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805  df-csb 3922
This theorem is referenced by:  prdsval  17515  cidfval  17734  monfval  17793  idfuval  17940  isnat  18015  fucco  18032  catcval  18167  xpcval  18246  1stfval  18260  2ndfval  18263  prfval  18268  evlf2  18288  curfval  18293  hofval  18322  ipoval  18600  mntoval  32955  mgcoval  32959  erlval  33230  rlocval  33231  poimirlem2  37582  rngcvalALTV  47988  ringcvalALTV  48012
  Copyright terms: Public domain W3C validator