| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-nfc 2885 |
| This theorem is referenced by: nfeld 2910 ralcom2 3356 nfreuwOLD 3405 nfrmowOLD 3406 cbvexeqsetf 3474 sbcralt 3847 sbcrext 3848 csbie2t 3912 sbcco3gw 4400 sbcco3g 4405 csbco3g 4406 dfnfc2 4905 nfdisjw 5098 eusvnfb 5363 eusv2i 5364 dfid3 5551 iota2d 6519 iota2 6520 fmptcof 7120 nfriotadw 7370 riotaeqimp 7388 riota5f 7390 riota5 7391 oprabid 7437 opiota 8058 fmpoco 8094 nfttrcld 9724 axrepndlem1 10606 axrepndlem2 10607 axunnd 10610 axpowndlem2 10612 axpowndlem3 10613 axpowndlem4 10614 axpownd 10615 axregndlem2 10617 axinfndlem1 10619 axinfnd 10620 axacndlem4 10624 axacndlem5 10625 axacnd 10626 nfnegd 11477 prodsn 15978 fprodeq0g 16010 bpolylem 16064 pcmpt 16912 chfacfpmmulfsupp 22801 elmptrab 23765 dvfsumrlim3 25992 itgsubstlem 26007 itgsubst 26008 ifeqeqx 32523 disjunsn 32575 axnulg 35123 bj-elgab 36957 bj-gabima 36958 wl-issetft 37600 unirep 37738 riotasv2d 38975 cdleme31so 40398 cdleme31se 40401 cdleme31sc 40403 cdleme31sde 40404 cdleme31sn2 40408 cdlemeg47rv2 40529 cdlemk41 40939 mapdheq 41747 hdmap1eq 41820 hdmapval2lem 41850 monotuz 42965 oddcomabszz 42968 mnringvald 44237 nfxnegd 45468 fprodsplit1 45622 dvnmul 45972 sge0sn 46408 hoidmvlelem3 46626 |
| Copyright terms: Public domain | W3C validator |