| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-nfc 2878 |
| This theorem is referenced by: nfeld 2903 ralcom2 3351 cbvexeqsetf 3462 sbcralt 3835 sbcrext 3836 csbie2t 3900 sbcco3gw 4388 sbcco3g 4393 csbco3g 4394 dfnfc2 4893 nfdisjw 5086 eusvnfb 5348 eusv2i 5349 dfid3 5536 iota2d 6499 iota2 6500 fmptcof 7102 nfriotadw 7352 riotaeqimp 7370 riota5f 7372 riota5 7373 oprabid 7419 opiota 8038 fmpoco 8074 nfttrcld 9663 axrepndlem1 10545 axrepndlem2 10546 axunnd 10549 axpowndlem2 10551 axpowndlem3 10552 axpowndlem4 10553 axpownd 10554 axregndlem2 10556 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 nfnegd 11416 prodsn 15928 fprodeq0g 15960 bpolylem 16014 pcmpt 16863 chfacfpmmulfsupp 22750 elmptrab 23714 dvfsumrlim3 25940 itgsubstlem 25955 itgsubst 25956 ifeqeqx 32471 disjunsn 32523 axnulg 35082 bj-elgab 36927 bj-gabima 36928 wl-issetft 37570 unirep 37708 riotasv2d 38950 cdleme31so 40373 cdleme31se 40376 cdleme31sc 40378 cdleme31sde 40379 cdleme31sn2 40383 cdlemeg47rv2 40504 cdlemk41 40914 mapdheq 41722 hdmap1eq 41795 hdmapval2lem 41825 monotuz 42930 oddcomabszz 42933 mnringvald 44202 nfxnegd 45437 fprodsplit1 45591 dvnmul 45941 sge0sn 46377 hoidmvlelem3 46595 |
| Copyright terms: Public domain | W3C validator |