![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2902 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-ex 1776 df-nf 1780 df-nfc 2889 |
This theorem is referenced by: nfeld 2914 ralcom2 3374 nfreuwOLD 3422 nfrmowOLD 3423 cbvexeqsetf 3492 sbcralt 3880 sbcrext 3881 csbiedOLD 3946 csbie2t 3948 sbcco3gw 4430 sbcco3g 4435 csbco3g 4436 dfnfc2 4933 nfdisjw 5126 eusvnfb 5398 eusv2i 5399 dfid3 5585 iota2d 6550 iota2 6551 fmptcof 7149 nfriotadw 7395 riotaeqimp 7413 riota5f 7415 riota5 7416 oprabid 7462 opiota 8082 fmpoco 8118 nfttrcld 9747 axrepndlem1 10629 axrepndlem2 10630 axunnd 10633 axpowndlem2 10635 axpowndlem3 10636 axpowndlem4 10637 axpownd 10638 axregndlem2 10640 axinfndlem1 10642 axinfnd 10643 axacndlem4 10647 axacndlem5 10648 axacnd 10649 nfnegd 11500 prodsn 15994 fprodeq0g 16026 bpolylem 16080 pcmpt 16925 chfacfpmmulfsupp 22884 elmptrab 23850 dvfsumrlim3 26088 itgsubstlem 26103 itgsubst 26104 ifeqeqx 32562 disjunsn 32613 axnulg 35084 bj-elgab 36921 bj-gabima 36922 wl-issetft 37562 unirep 37700 riotasv2d 38938 cdleme31so 40361 cdleme31se 40364 cdleme31sc 40366 cdleme31sde 40367 cdleme31sn2 40371 cdlemeg47rv2 40492 cdlemk41 40902 mapdheq 41710 hdmap1eq 41783 hdmapval2lem 41813 monotuz 42929 oddcomabszz 42932 mnringvald 44203 nfxnegd 45390 fprodsplit1 45548 dvnmul 45898 sge0sn 46334 hoidmvlelem3 46552 |
Copyright terms: Public domain | W3C validator |