| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2895 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnfc 2880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-nfc 2882 |
| This theorem is referenced by: nfeld 2907 ralcom2 3344 cbvexeqsetf 3452 sbcralt 3819 sbcrext 3820 csbie2t 3884 sbcco3gw 4374 sbcco3g 4379 csbco3g 4380 dfnfc2 4880 nfdisjw 5072 eusvnfb 5333 eusv2i 5334 dfid3 5517 iota2d 6474 iota2 6475 fmptcof 7069 nfriotadw 7317 riotaeqimp 7335 riota5f 7337 riota5 7338 oprabid 7384 opiota 7997 fmpoco 8031 nfttrcld 9607 axrepndlem1 10490 axrepndlem2 10491 axunnd 10494 axpowndlem2 10496 axpowndlem3 10497 axpowndlem4 10498 axpownd 10499 axregndlem2 10501 axinfndlem1 10503 axinfnd 10504 axacndlem4 10508 axacndlem5 10509 axacnd 10510 nfnegd 11362 prodsn 15871 fprodeq0g 15903 bpolylem 15957 pcmpt 16806 nfchnd 18519 chfacfpmmulfsupp 22779 elmptrab 23743 dvfsumrlim3 25968 itgsubstlem 25983 itgsubst 25984 ifeqeqx 32524 disjunsn 32576 axnulg 35140 bj-elgab 37004 bj-gabima 37005 wl-issetft 37647 unirep 37774 riotasv2d 39076 cdleme31so 40498 cdleme31se 40501 cdleme31sc 40503 cdleme31sde 40504 cdleme31sn2 40508 cdlemeg47rv2 40629 cdlemk41 41039 mapdheq 41847 hdmap1eq 41920 hdmapval2lem 41950 monotuz 43058 oddcomabszz 43061 mnringvald 44330 nfxnegd 45563 fprodsplit1 45717 dvnmul 46065 sge0sn 46501 hoidmvlelem3 46719 |
| Copyright terms: Public domain | W3C validator |