![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-nf 1786 df-nfc 2885 |
This theorem is referenced by: nfeld 2914 nfraldwOLD 3318 ralcom2 3373 nfreuwOLD 3422 nfrmowOLD 3423 vtoclgft 3540 vtocldOLD 3543 sbcralt 3865 sbcrext 3866 csbiedOLD 3931 csbie2t 3933 sbcco3gw 4421 sbcco3g 4426 csbco3g 4427 dfnfc2 4932 nfdisjw 5124 eusvnfb 5390 eusv2i 5391 dfid3 5576 iota2d 6528 iota2 6529 fmptcof 7124 nfriotadw 7369 riotaeqimp 7388 riota5f 7390 riota5 7391 oprabid 7437 opiota 8041 fmpoco 8077 nfttrcld 9701 axrepndlem1 10583 axrepndlem2 10584 axunnd 10587 axpowndlem2 10589 axpowndlem3 10590 axpowndlem4 10591 axpownd 10592 axregndlem2 10594 axinfndlem1 10596 axinfnd 10597 axacndlem4 10601 axacndlem5 10602 axacnd 10603 nfnegd 11451 prodsn 15902 fprodeq0g 15934 bpolylem 15988 pcmpt 16821 chfacfpmmulfsupp 22356 elmptrab 23322 dvfsumrlim3 25541 itgsubstlem 25556 itgsubst 25557 ifeqeqx 31761 disjunsn 31812 bj-elgab 35807 bj-gabima 35808 wl-issetft 36432 unirep 36570 riotasv2d 37815 cdleme31so 39238 cdleme31se 39241 cdleme31sc 39243 cdleme31sde 39244 cdleme31sn2 39248 cdlemeg47rv2 39369 cdlemk41 39779 mapdheq 40587 hdmap1eq 40660 hdmapval2lem 40690 monotuz 41665 oddcomabszz 41668 mnringvald 42952 nfxnegd 44137 fprodsplit1 44295 dvnmul 44645 sge0sn 45081 hoidmvlelem3 45299 |
Copyright terms: Public domain | W3C validator |