Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2919 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-5 1911 |
This theorem depends on definitions: df-bi 210 df-ex 1782 df-nf 1786 df-nfc 2901 |
This theorem is referenced by: nfeld 2930 nfraldw 3151 ralcom2 3281 nfreuw 3292 nfrmow 3293 vtoclgft 3472 vtoclgftOLD 3473 vtocldOLD 3476 sbcralt 3780 sbcrext 3781 csbied 3843 csbie2t 3845 sbcco3gw 4322 sbcco3g 4327 csbco3g 4328 dfnfc2 4825 nfdisjw 5012 eusvnfb 5265 eusv2i 5266 dfid3 5435 iota2d 6327 iota2 6328 fmptcof 6888 nfriotadw 7121 riotaeqimp 7139 riota5f 7141 riota5 7142 oprabid 7187 opiota 7766 fmpoco 7800 axrepndlem1 10057 axrepndlem2 10058 axunnd 10061 axpowndlem2 10063 axpowndlem3 10064 axpowndlem4 10065 axpownd 10066 axregndlem2 10068 axinfndlem1 10070 axinfnd 10071 axacndlem4 10075 axacndlem5 10076 axacnd 10077 nfnegd 10924 prodsn 15369 fprodeq0g 15401 bpolylem 15455 pcmpt 16288 chfacfpmmulfsupp 21568 elmptrab 22532 dvfsumrlim3 24737 itgsubstlem 24752 itgsubst 24753 ifeqeqx 30412 disjunsn 30460 unirep 35457 riotasv2d 36559 cdleme31so 37981 cdleme31se 37984 cdleme31sc 37986 cdleme31sde 37987 cdleme31sn2 37991 cdlemeg47rv2 38112 cdlemk41 38522 mapdheq 39330 hdmap1eq 39403 hdmapval2lem 39433 monotuz 40283 oddcomabszz 40286 mnringvald 41322 nfxnegd 42472 fprodsplit1 42629 dvnmul 42979 sge0sn 43412 hoidmvlelem3 43630 |
Copyright terms: Public domain | W3C validator |