| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-nfc 2881 |
| This theorem is referenced by: nfeld 2906 ralcom2 3343 cbvexeqsetf 3451 sbcralt 3823 sbcrext 3824 csbie2t 3888 sbcco3gw 4375 sbcco3g 4380 csbco3g 4381 dfnfc2 4881 nfdisjw 5070 eusvnfb 5331 eusv2i 5332 dfid3 5514 iota2d 6469 iota2 6470 fmptcof 7063 nfriotadw 7311 riotaeqimp 7329 riota5f 7331 riota5 7332 oprabid 7378 opiota 7991 fmpoco 8025 nfttrcld 9600 axrepndlem1 10480 axrepndlem2 10481 axunnd 10484 axpowndlem2 10486 axpowndlem3 10487 axpowndlem4 10488 axpownd 10489 axregndlem2 10491 axinfndlem1 10493 axinfnd 10494 axacndlem4 10498 axacndlem5 10499 axacnd 10500 nfnegd 11352 prodsn 15866 fprodeq0g 15898 bpolylem 15952 pcmpt 16801 nfchnd 18514 chfacfpmmulfsupp 22776 elmptrab 23740 dvfsumrlim3 25965 itgsubstlem 25980 itgsubst 25981 ifeqeqx 32517 disjunsn 32569 axnulg 35110 bj-elgab 36972 bj-gabima 36973 wl-issetft 37615 unirep 37753 riotasv2d 38995 cdleme31so 40417 cdleme31se 40420 cdleme31sc 40422 cdleme31sde 40423 cdleme31sn2 40427 cdlemeg47rv2 40548 cdlemk41 40958 mapdheq 41766 hdmap1eq 41839 hdmapval2lem 41869 monotuz 42973 oddcomabszz 42976 mnringvald 44245 nfxnegd 45478 fprodsplit1 45632 dvnmul 45980 sge0sn 46416 hoidmvlelem3 46634 |
| Copyright terms: Public domain | W3C validator |