| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-nfc 2879 |
| This theorem is referenced by: nfeld 2904 ralcom2 3353 cbvexeqsetf 3465 sbcralt 3838 sbcrext 3839 csbie2t 3903 sbcco3gw 4391 sbcco3g 4396 csbco3g 4397 dfnfc2 4896 nfdisjw 5089 eusvnfb 5351 eusv2i 5352 dfid3 5539 iota2d 6502 iota2 6503 fmptcof 7105 nfriotadw 7355 riotaeqimp 7373 riota5f 7375 riota5 7376 oprabid 7422 opiota 8041 fmpoco 8077 nfttrcld 9670 axrepndlem1 10552 axrepndlem2 10553 axunnd 10556 axpowndlem2 10558 axpowndlem3 10559 axpowndlem4 10560 axpownd 10561 axregndlem2 10563 axinfndlem1 10565 axinfnd 10566 axacndlem4 10570 axacndlem5 10571 axacnd 10572 nfnegd 11423 prodsn 15935 fprodeq0g 15967 bpolylem 16021 pcmpt 16870 chfacfpmmulfsupp 22757 elmptrab 23721 dvfsumrlim3 25947 itgsubstlem 25962 itgsubst 25963 ifeqeqx 32478 disjunsn 32530 axnulg 35089 bj-elgab 36934 bj-gabima 36935 wl-issetft 37577 unirep 37715 riotasv2d 38957 cdleme31so 40380 cdleme31se 40383 cdleme31sc 40385 cdleme31sde 40386 cdleme31sn2 40390 cdlemeg47rv2 40511 cdlemk41 40921 mapdheq 41729 hdmap1eq 41802 hdmapval2lem 41832 monotuz 42937 oddcomabszz 42940 mnringvald 44209 nfxnegd 45444 fprodsplit1 45598 dvnmul 45948 sge0sn 46384 hoidmvlelem3 46602 |
| Copyright terms: Public domain | W3C validator |