![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 df-nfc 2886 |
This theorem is referenced by: nfeld 2915 nfraldwOLD 3319 ralcom2 3374 nfreuwOLD 3423 nfrmowOLD 3424 vtoclgft 3541 vtocldOLD 3544 sbcralt 3867 sbcrext 3868 csbiedOLD 3933 csbie2t 3935 sbcco3gw 4423 sbcco3g 4428 csbco3g 4429 dfnfc2 4934 nfdisjw 5126 eusvnfb 5392 eusv2i 5393 dfid3 5578 iota2d 6532 iota2 6533 fmptcof 7128 nfriotadw 7373 riotaeqimp 7392 riota5f 7394 riota5 7395 oprabid 7441 opiota 8045 fmpoco 8081 nfttrcld 9705 axrepndlem1 10587 axrepndlem2 10588 axunnd 10591 axpowndlem2 10593 axpowndlem3 10594 axpowndlem4 10595 axpownd 10596 axregndlem2 10598 axinfndlem1 10600 axinfnd 10601 axacndlem4 10605 axacndlem5 10606 axacnd 10607 nfnegd 11455 prodsn 15906 fprodeq0g 15938 bpolylem 15992 pcmpt 16825 chfacfpmmulfsupp 22365 elmptrab 23331 dvfsumrlim3 25550 itgsubstlem 25565 itgsubst 25566 ifeqeqx 31774 disjunsn 31825 bj-elgab 35819 bj-gabima 35820 wl-issetft 36444 unirep 36582 riotasv2d 37827 cdleme31so 39250 cdleme31se 39253 cdleme31sc 39255 cdleme31sde 39256 cdleme31sn2 39260 cdlemeg47rv2 39381 cdlemk41 39791 mapdheq 40599 hdmap1eq 40672 hdmapval2lem 40702 monotuz 41680 oddcomabszz 41683 mnringvald 42967 nfxnegd 44151 fprodsplit1 44309 dvnmul 44659 sge0sn 45095 hoidmvlelem3 45313 |
Copyright terms: Public domain | W3C validator |