![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2895 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-5 1905 |
This theorem depends on definitions: df-bi 206 df-ex 1774 df-nf 1778 df-nfc 2877 |
This theorem is referenced by: nfeld 2906 nfraldwOLD 3310 ralcom2 3365 nfreuwOLD 3414 nfrmowOLD 3415 issetft 3480 vtocldOLD 3541 sbcralt 3858 sbcrext 3859 csbiedOLD 3924 csbie2t 3926 sbcco3gw 4414 sbcco3g 4419 csbco3g 4420 dfnfc2 4923 nfdisjw 5115 eusvnfb 5381 eusv2i 5382 dfid3 5567 iota2d 6521 iota2 6522 fmptcof 7120 nfriotadw 7365 riotaeqimp 7384 riota5f 7386 riota5 7387 oprabid 7433 opiota 8038 fmpoco 8075 nfttrcld 9701 axrepndlem1 10583 axrepndlem2 10584 axunnd 10587 axpowndlem2 10589 axpowndlem3 10590 axpowndlem4 10591 axpownd 10592 axregndlem2 10594 axinfndlem1 10596 axinfnd 10597 axacndlem4 10601 axacndlem5 10602 axacnd 10603 nfnegd 11452 prodsn 15903 fprodeq0g 15935 bpolylem 15989 pcmpt 16824 chfacfpmmulfsupp 22687 elmptrab 23653 dvfsumrlim3 25890 itgsubstlem 25905 itgsubst 25906 ifeqeqx 32243 disjunsn 32294 bj-elgab 36309 bj-gabima 36310 wl-issetft 36934 unirep 37072 riotasv2d 38317 cdleme31so 39740 cdleme31se 39743 cdleme31sc 39745 cdleme31sde 39746 cdleme31sn2 39750 cdlemeg47rv2 39871 cdlemk41 40281 mapdheq 41089 hdmap1eq 41162 hdmapval2lem 41192 monotuz 42169 oddcomabszz 42172 mnringvald 43456 nfxnegd 44636 fprodsplit1 44794 dvnmul 45144 sge0sn 45580 hoidmvlelem3 45798 |
Copyright terms: Public domain | W3C validator |