Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 df-nfc 2888 |
This theorem is referenced by: nfeld 2917 nfraldwOLD 3147 ralcom2 3288 nfreuw 3300 nfrmow 3301 vtoclgft 3482 vtocldOLD 3485 sbcralt 3801 sbcrext 3802 csbiedOLD 3867 csbie2t 3869 sbcco3gw 4353 sbcco3g 4358 csbco3g 4359 dfnfc2 4860 nfdisjw 5047 eusvnfb 5311 eusv2i 5312 dfid3 5483 iota2d 6406 iota2 6407 fmptcof 6984 nfriotadw 7220 riotaeqimp 7239 riota5f 7241 riota5 7242 oprabid 7287 opiota 7872 fmpoco 7906 axrepndlem1 10279 axrepndlem2 10280 axunnd 10283 axpowndlem2 10285 axpowndlem3 10286 axpowndlem4 10287 axpownd 10288 axregndlem2 10290 axinfndlem1 10292 axinfnd 10293 axacndlem4 10297 axacndlem5 10298 axacnd 10299 nfnegd 11146 prodsn 15600 fprodeq0g 15632 bpolylem 15686 pcmpt 16521 chfacfpmmulfsupp 21920 elmptrab 22886 dvfsumrlim3 25102 itgsubstlem 25117 itgsubst 25118 ifeqeqx 30786 disjunsn 30834 nfttrcld 33696 bj-elgab 35054 bj-gabima 35055 unirep 35798 riotasv2d 36898 cdleme31so 38320 cdleme31se 38323 cdleme31sc 38325 cdleme31sde 38326 cdleme31sn2 38330 cdlemeg47rv2 38451 cdlemk41 38861 mapdheq 39669 hdmap1eq 39742 hdmapval2lem 39772 monotuz 40679 oddcomabszz 40682 mnringvald 41715 nfxnegd 42871 fprodsplit1 43024 dvnmul 43374 sge0sn 43807 hoidmvlelem3 44025 |
Copyright terms: Public domain | W3C validator |