| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-nfc 2878 |
| This theorem is referenced by: nfeld 2903 ralcom2 3342 cbvexeqsetf 3453 sbcralt 3826 sbcrext 3827 csbie2t 3891 sbcco3gw 4378 sbcco3g 4383 csbco3g 4384 dfnfc2 4883 nfdisjw 5074 eusvnfb 5335 eusv2i 5336 dfid3 5521 iota2d 6474 iota2 6475 fmptcof 7068 nfriotadw 7318 riotaeqimp 7336 riota5f 7338 riota5 7339 oprabid 7385 opiota 8001 fmpoco 8035 nfttrcld 9625 axrepndlem1 10505 axrepndlem2 10506 axunnd 10509 axpowndlem2 10511 axpowndlem3 10512 axpowndlem4 10513 axpownd 10514 axregndlem2 10516 axinfndlem1 10518 axinfnd 10519 axacndlem4 10523 axacndlem5 10524 axacnd 10525 nfnegd 11376 prodsn 15887 fprodeq0g 15919 bpolylem 15973 pcmpt 16822 chfacfpmmulfsupp 22766 elmptrab 23730 dvfsumrlim3 25956 itgsubstlem 25971 itgsubst 25972 ifeqeqx 32504 disjunsn 32556 axnulg 35058 bj-elgab 36912 bj-gabima 36913 wl-issetft 37555 unirep 37693 riotasv2d 38935 cdleme31so 40358 cdleme31se 40361 cdleme31sc 40363 cdleme31sde 40364 cdleme31sn2 40368 cdlemeg47rv2 40489 cdlemk41 40899 mapdheq 41707 hdmap1eq 41780 hdmapval2lem 41810 monotuz 42914 oddcomabszz 42917 mnringvald 44186 nfxnegd 45421 fprodsplit1 45575 dvnmul 45925 sge0sn 46361 hoidmvlelem3 46579 |
| Copyright terms: Public domain | W3C validator |