![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 df-nfc 2895 |
This theorem is referenced by: nfeld 2920 nfraldwOLD 3328 ralcom2 3385 nfreuwOLD 3433 nfrmowOLD 3434 cbvexeqsetf 3503 sbcralt 3894 sbcrext 3895 csbiedOLD 3960 csbie2t 3962 sbcco3gw 4448 sbcco3g 4453 csbco3g 4454 dfnfc2 4953 nfdisjw 5145 eusvnfb 5411 eusv2i 5412 dfid3 5596 iota2d 6561 iota2 6562 fmptcof 7164 nfriotadw 7412 riotaeqimp 7431 riota5f 7433 riota5 7434 oprabid 7480 opiota 8100 fmpoco 8136 nfttrcld 9779 axrepndlem1 10661 axrepndlem2 10662 axunnd 10665 axpowndlem2 10667 axpowndlem3 10668 axpowndlem4 10669 axpownd 10670 axregndlem2 10672 axinfndlem1 10674 axinfnd 10675 axacndlem4 10679 axacndlem5 10680 axacnd 10681 nfnegd 11531 prodsn 16010 fprodeq0g 16042 bpolylem 16096 pcmpt 16939 chfacfpmmulfsupp 22890 elmptrab 23856 dvfsumrlim3 26094 itgsubstlem 26109 itgsubst 26110 ifeqeqx 32565 disjunsn 32616 axnulg 35068 bj-elgab 36905 bj-gabima 36906 wl-issetft 37536 unirep 37674 riotasv2d 38913 cdleme31so 40336 cdleme31se 40339 cdleme31sc 40341 cdleme31sde 40342 cdleme31sn2 40346 cdlemeg47rv2 40467 cdlemk41 40877 mapdheq 41685 hdmap1eq 41758 hdmapval2lem 41788 monotuz 42898 oddcomabszz 42901 mnringvald 44177 nfxnegd 45356 fprodsplit1 45514 dvnmul 45864 sge0sn 46300 hoidmvlelem3 46518 |
Copyright terms: Public domain | W3C validator |