Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 df-nfc 2889 |
This theorem is referenced by: nfeld 2918 nfraldwOLD 3149 ralcom2 3290 nfreuwOLD 3306 nfrmowOLD 3307 vtoclgft 3492 vtocldOLD 3495 sbcralt 3805 sbcrext 3806 csbiedOLD 3871 csbie2t 3873 sbcco3gw 4356 sbcco3g 4361 csbco3g 4362 dfnfc2 4863 nfdisjw 5051 eusvnfb 5316 eusv2i 5317 dfid3 5492 iota2d 6421 iota2 6422 fmptcof 7002 nfriotadw 7240 riotaeqimp 7259 riota5f 7261 riota5 7262 oprabid 7307 opiota 7899 fmpoco 7935 nfttrcld 9468 axrepndlem1 10348 axrepndlem2 10349 axunnd 10352 axpowndlem2 10354 axpowndlem3 10355 axpowndlem4 10356 axpownd 10357 axregndlem2 10359 axinfndlem1 10361 axinfnd 10362 axacndlem4 10366 axacndlem5 10367 axacnd 10368 nfnegd 11216 prodsn 15672 fprodeq0g 15704 bpolylem 15758 pcmpt 16593 chfacfpmmulfsupp 22012 elmptrab 22978 dvfsumrlim3 25197 itgsubstlem 25212 itgsubst 25213 ifeqeqx 30885 disjunsn 30933 bj-elgab 35127 bj-gabima 35128 unirep 35871 riotasv2d 36971 cdleme31so 38393 cdleme31se 38396 cdleme31sc 38398 cdleme31sde 38399 cdleme31sn2 38403 cdlemeg47rv2 38524 cdlemk41 38934 mapdheq 39742 hdmap1eq 39815 hdmapval2lem 39845 monotuz 40763 oddcomabszz 40766 mnringvald 41826 nfxnegd 42981 fprodsplit1 43134 dvnmul 43484 sge0sn 43917 hoidmvlelem3 44135 |
Copyright terms: Public domain | W3C validator |