Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbnest1g | Structured version Visualization version GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
csbnest1g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 3857 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
2 | 1 | ax-gen 1798 | . . 3 ⊢ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
3 | csbnestgfw 4353 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) | |
4 | 2, 3 | mpan2 688 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) |
5 | csbcow 3847 | . . 3 ⊢ ⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶 | |
6 | 5 | csbeq2i 3840 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 |
7 | csbcow 3847 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶 | |
8 | 4, 6, 7 | 3eqtr3g 2801 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: csbidm 4364 |
Copyright terms: Public domain | W3C validator |