MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnest1g Structured version   Visualization version   GIF version

Theorem csbnest1g 4385
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
csbnest1g (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)

Proof of Theorem csbnest1g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3911 . . . 4 𝑥𝑦 / 𝑥𝐶
21ax-gen 1789 . . 3 𝑦𝑥𝑦 / 𝑥𝐶
3 csbnestgfw 4375 . . 3 ((𝐴𝑉 ∧ ∀𝑦𝑥𝑦 / 𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶)
42, 3mpan2 687 . 2 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶)
5 csbcow 3902 . . 3 𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐵 / 𝑥𝐶
65csbeq2i 3895 . 2 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶
7 csbcow 3902 . 2 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶
84, 6, 73eqtr3g 2884 1 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1528   = wceq 1530  wcel 2107  wnfc 2966  csb 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-v 3502  df-sbc 3777  df-csb 3888
This theorem is referenced by:  csbidm  4386
  Copyright terms: Public domain W3C validator