MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbidm Structured version   Visualization version   GIF version

Theorem csbidm 4429
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbidm 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbidm
StepHypRef Expression
1 csbnest1g 4428 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐴 / 𝑥𝐵)
2 csbconstg 3911 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 = 𝐴)
32csbeq1d 3896 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
41, 3eqtrd 2770 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
5 csbprc 4405 . . 3 𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = ∅)
6 csbprc 4405 . . 3 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
75, 6eqtr4d 2773 . 2 𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
84, 7pm2.61i 182 1 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2104  Vcvv 3472  csb 3892  c0 4321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-nul 4322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator