MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbidm Structured version   Visualization version   GIF version

Theorem csbidm 4383
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbidm 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbidm
StepHypRef Expression
1 csbnest1g 4382 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐴 / 𝑥𝐵)
2 csbconstg 3869 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 = 𝐴)
32csbeq1d 3854 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
41, 3eqtrd 2766 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
5 csbprc 4359 . . 3 𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = ∅)
6 csbprc 4359 . . 3 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
75, 6eqtr4d 2769 . 2 𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
84, 7pm2.61i 182 1 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  csb 3850  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-nul 4284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator