MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbidm Structured version   Visualization version   GIF version

Theorem csbidm 4386
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbidm 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbidm
StepHypRef Expression
1 csbnest1g 4385 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐴 / 𝑥𝐵)
2 csbconstg 3906 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 = 𝐴)
32csbeq1d 3891 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
41, 3eqtrd 2861 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
5 csbprc 4362 . . 3 𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = ∅)
6 csbprc 4362 . . 3 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
75, 6eqtr4d 2864 . 2 𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
84, 7pm2.61i 183 1 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1530  wcel 2107  Vcvv 3500  csb 3887  c0 4295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-nul 4296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator