MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbco3g Structured version   Visualization version   GIF version

Theorem csbco3g 4437
Description: Composition of two class substitutions. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbcco3g.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbco3g (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐶 / 𝑦𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem csbco3g
StepHypRef Expression
1 csbnestg 4435 . 2 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐴 / 𝑥𝐵 / 𝑦𝐷)
2 elex 3499 . . . 4 (𝐴𝑉𝐴 ∈ V)
3 nfcvd 2904 . . . . 5 (𝐴 ∈ V → 𝑥𝐶)
4 sbcco3g.1 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
53, 4csbiegf 3942 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐶)
62, 5syl 17 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
76csbeq1d 3912 . 2 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐶 / 𝑦𝐷)
81, 7eqtrd 2775 1 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐶 / 𝑦𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  csb 3908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-13 2375  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-v 3480  df-sbc 3792  df-csb 3909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator