![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbco3g | Structured version Visualization version GIF version |
Description: Composition of two class substitutions. Usage of this theorem is discouraged because it depends on ax-13 2366. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbcco3g.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbco3g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbnestg 4431 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐷) | |
2 | elex 3482 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | nfcvd 2893 | . . . . 5 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) | |
4 | sbcco3g.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | 3, 4 | csbiegf 3926 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
7 | 6 | csbeq1d 3896 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) |
8 | 1, 7 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⦋csb 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-13 2366 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-v 3464 df-sbc 3777 df-csb 3893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |