MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnestg Structured version   Visualization version   GIF version

Theorem csbnestg 4425
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker csbnestgw 4420 when possible. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) (New usage is discouraged.)
Assertion
Ref Expression
csbnestg (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem csbnestg
StepHypRef Expression
1 nfcv 2903 . . 3 𝑥𝐶
21ax-gen 1797 . 2 𝑦𝑥𝐶
3 csbnestgf 4423 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
42, 3mpan2 689 1 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wcel 2106  wnfc 2883  csb 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2371  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-v 3476  df-sbc 3777  df-csb 3893
This theorem is referenced by:  csbco3g  4427
  Copyright terms: Public domain W3C validator