MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcnestg Structured version   Visualization version   GIF version

Theorem sbcnestg 4377
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker sbcnestgw 4372 when possible. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.)
Assertion
Ref Expression
sbcnestg (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcnestg
StepHypRef Expression
1 nfv 1915 . . 3 𝑥𝜑
21ax-gen 1796 . 2 𝑦𝑥𝜑
3 sbcnestgf 4375 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
42, 3mpan2 691 1 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wnf 1784  wcel 2113  [wsbc 3737  csb 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-13 2374  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-v 3439  df-sbc 3738  df-csb 3847
This theorem is referenced by:  sbcco3g  4379
  Copyright terms: Public domain W3C validator