| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcnestg | Structured version Visualization version GIF version | ||
| Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker sbcnestgw 4373 when possible. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbcnestg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | ax-gen 1796 | . 2 ⊢ ∀𝑦Ⅎ𝑥𝜑 |
| 3 | sbcnestgf 4376 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | |
| 4 | 2, 3 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 Ⅎwnf 1784 ∈ wcel 2111 [wsbc 3741 ⦋csb 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-sbc 3742 df-csb 3851 |
| This theorem is referenced by: sbcco3g 4380 |
| Copyright terms: Public domain | W3C validator |