Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcnestg | Structured version Visualization version GIF version |
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2379. Use the weaker sbcnestgw 4320 when possible. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbcnestg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | ax-gen 1797 | . 2 ⊢ ∀𝑦Ⅎ𝑥𝜑 |
3 | sbcnestgf 4323 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | |
4 | 2, 3 | mpan2 690 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1536 Ⅎwnf 1785 ∈ wcel 2111 [wsbc 3698 ⦋csb 3807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-13 2379 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-v 3411 df-sbc 3699 df-csb 3808 |
This theorem is referenced by: sbcco3g 4327 |
Copyright terms: Public domain | W3C validator |