MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcco3g Structured version   Visualization version   GIF version

Theorem sbcco3g 4426
Description: Composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker sbcco3gw 4421 when possible. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbcco3g.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
sbcco3g (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcco3g
StepHypRef Expression
1 sbcnestg 4424 . 2 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
2 elex 3492 . . 3 (𝐴𝑉𝐴 ∈ V)
3 nfcvd 2904 . . . 4 (𝐴 ∈ V → 𝑥𝐶)
4 sbcco3g.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
53, 4csbiegf 3926 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐶)
6 dfsbcq 3778 . . 3 (𝐴 / 𝑥𝐵 = 𝐶 → ([𝐴 / 𝑥𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
72, 5, 63syl 18 . 2 (𝐴𝑉 → ([𝐴 / 𝑥𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
81, 7bitrd 278 1 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  Vcvv 3474  [wsbc 3776  csb 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2371  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-v 3476  df-sbc 3777  df-csb 3893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator