| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcco3g | Structured version Visualization version GIF version | ||
| Description: Composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker sbcco3gw 4405 when possible. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbcco3g.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sbcco3g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcnestg 4408 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | |
| 2 | elex 3485 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | nfcvd 2900 | . . . 4 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) | |
| 4 | sbcco3g.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | 3, 4 | csbiegf 3912 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| 6 | dfsbcq 3772 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = 𝐶 → ([⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) | |
| 7 | 2, 5, 6 | 3syl 18 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
| 8 | 1, 7 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3464 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |