![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbnestgw | Structured version Visualization version GIF version |
Description: Nest the composition of two substitutions. Version of csbnestg 4426 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
csbnestgw | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
2 | 1 | ax-gen 1797 | . 2 ⊢ ∀𝑦Ⅎ𝑥𝐶 |
3 | csbnestgfw 4419 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) | |
4 | 2, 3 | mpan2 689 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2106 Ⅎwnfc 2883 ⦋csb 3893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-v 3476 df-sbc 3778 df-csb 3894 |
This theorem is referenced by: disjxpin 31814 poimirlem24 36507 cdleme31snd 39252 cdlemeg46c 39379 |
Copyright terms: Public domain | W3C validator |