Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbnestgw | Structured version Visualization version GIF version |
Description: Nest the composition of two substitutions. Version of csbnestg 4357 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
csbnestgw | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
2 | 1 | ax-gen 1799 | . 2 ⊢ ∀𝑦Ⅎ𝑥𝐶 |
3 | csbnestgfw 4350 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) | |
4 | 2, 3 | mpan2 687 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: disjxpin 30828 poimirlem24 35728 cdleme31snd 38327 cdlemeg46c 38454 |
Copyright terms: Public domain | W3C validator |