MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnestgw Structured version   Visualization version   GIF version

Theorem csbnestgw 4355
Description: Nest the composition of two substitutions. Version of csbnestg 4360 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 26-Jan-2024.)
Assertion
Ref Expression
csbnestgw (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem csbnestgw
StepHypRef Expression
1 nfcv 2907 . . 3 𝑥𝐶
21ax-gen 1798 . 2 𝑦𝑥𝐶
3 csbnestgfw 4353 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
42, 3mpan2 688 1 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wcel 2106  wnfc 2887  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434  df-sbc 3717  df-csb 3833
This theorem is referenced by:  disjxpin  30927  poimirlem24  35801  cdleme31snd  38400  cdlemeg46c  38527
  Copyright terms: Public domain W3C validator