MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnestgw Structured version   Visualization version   GIF version

Theorem csbnestgw 4373
Description: Nest the composition of two substitutions. Version of csbnestg 4378 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2374. (Revised by GG, 26-Jan-2024.)
Assertion
Ref Expression
csbnestgw (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem csbnestgw
StepHypRef Expression
1 nfcv 2895 . . 3 𝑥𝐶
21ax-gen 1796 . 2 𝑦𝑥𝐶
3 csbnestgfw 4371 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
42, 3mpan2 691 1 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wcel 2113  wnfc 2880  csb 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-v 3439  df-sbc 3738  df-csb 3847
This theorem is referenced by:  disjxpin  32572  poimirlem24  37707  cdleme31snd  40508  cdlemeg46c  40635
  Copyright terms: Public domain W3C validator