| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbnestgw | Structured version Visualization version GIF version | ||
| Description: Nest the composition of two substitutions. Version of csbnestg 4428 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2376. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| csbnestgw | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
| 2 | 1 | ax-gen 1794 | . 2 ⊢ ∀𝑦Ⅎ𝑥𝐶 |
| 3 | csbnestgfw 4421 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) | |
| 4 | 2, 3 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2889 ⦋csb 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-v 3481 df-sbc 3788 df-csb 3899 |
| This theorem is referenced by: disjxpin 32602 poimirlem24 37652 cdleme31snd 40389 cdlemeg46c 40516 |
| Copyright terms: Public domain | W3C validator |