MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnestgw Structured version   Visualization version   GIF version

Theorem csbnestgw 4447
Description: Nest the composition of two substitutions. Version of csbnestg 4452 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2380. (Revised by GG, 26-Jan-2024.)
Assertion
Ref Expression
csbnestgw (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem csbnestgw
StepHypRef Expression
1 nfcv 2908 . . 3 𝑥𝐶
21ax-gen 1793 . 2 𝑦𝑥𝐶
3 csbnestgfw 4445 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
42, 3mpan2 690 1 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wcel 2108  wnfc 2893  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-sbc 3805  df-csb 3922
This theorem is referenced by:  disjxpin  32610  poimirlem24  37604  cdleme31snd  40343  cdlemeg46c  40470
  Copyright terms: Public domain W3C validator