| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4218. Another version is given by dfin4 4226. (Contributed by NM, 10-Jun-2004.) |
| Ref | Expression |
|---|---|
| dfin2 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3438 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | eldif 3910 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | mpbiran 709 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥 ∈ 𝐵) |
| 4 | 3 | con2bii 357 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ (V ∖ 𝐵)) |
| 5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) |
| 6 | eldif 3910 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) | |
| 7 | 5, 6 | bitr4i 278 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵))) |
| 8 | 7 | ineqri 4160 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∖ cdif 3897 ∩ cin 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-dif 3903 df-in 3907 |
| This theorem is referenced by: dfun3 4224 dfin3 4225 invdif 4227 difundi 4238 difindi 4240 difdif2 4244 |
| Copyright terms: Public domain | W3C validator |