MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin2 Structured version   Visualization version   GIF version

Theorem dfin2 4260
Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4259. Another version is given by dfin4 4267. (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfin2 (𝐴𝐵) = (𝐴 ∖ (V ∖ 𝐵))

Proof of Theorem dfin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3478 . . . . . 6 𝑥 ∈ V
2 eldif 3958 . . . . . 6 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
31, 2mpbiran 707 . . . . 5 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
43con2bii 357 . . . 4 (𝑥𝐵 ↔ ¬ 𝑥 ∈ (V ∖ 𝐵))
54anbi2i 623 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
6 eldif 3958 . . 3 (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
75, 6bitr4i 277 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)))
87ineqri 4204 1 (𝐴𝐵) = (𝐴 ∖ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cdif 3945  cin 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-dif 3951  df-in 3955
This theorem is referenced by:  dfun3  4265  dfin3  4266  invdif  4268  difundi  4279  difindi  4281  difdif2  4286
  Copyright terms: Public domain W3C validator