| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4245. Another version is given by dfin4 4253. (Contributed by NM, 10-Jun-2004.) |
| Ref | Expression |
|---|---|
| dfin2 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | eldif 3936 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | mpbiran 709 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥 ∈ 𝐵) |
| 4 | 3 | con2bii 357 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ (V ∖ 𝐵)) |
| 5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) |
| 6 | eldif 3936 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) | |
| 7 | 5, 6 | bitr4i 278 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵))) |
| 8 | 7 | ineqri 4187 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-in 3933 |
| This theorem is referenced by: dfun3 4251 dfin3 4252 invdif 4254 difundi 4265 difindi 4267 difdif2 4271 |
| Copyright terms: Public domain | W3C validator |