MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin2 Structured version   Visualization version   GIF version

Theorem dfin2 4246
Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4245. Another version is given by dfin4 4253. (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfin2 (𝐴𝐵) = (𝐴 ∖ (V ∖ 𝐵))

Proof of Theorem dfin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3463 . . . . . 6 𝑥 ∈ V
2 eldif 3936 . . . . . 6 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
31, 2mpbiran 709 . . . . 5 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
43con2bii 357 . . . 4 (𝑥𝐵 ↔ ¬ 𝑥 ∈ (V ∖ 𝐵))
54anbi2i 623 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
6 eldif 3936 . . 3 (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
75, 6bitr4i 278 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)))
87ineqri 4187 1 (𝐴𝐵) = (𝐴 ∖ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923  cin 3925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929  df-in 3933
This theorem is referenced by:  dfun3  4251  dfin3  4252  invdif  4254  difundi  4265  difindi  4267  difdif2  4271
  Copyright terms: Public domain W3C validator