MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin2 Structured version   Visualization version   GIF version

Theorem dfin2 4237
Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4236. Another version is given by dfin4 4244. (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfin2 (𝐴𝐵) = (𝐴 ∖ (V ∖ 𝐵))

Proof of Theorem dfin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . . 6 𝑥 ∈ V
2 eldif 3927 . . . . . 6 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
31, 2mpbiran 709 . . . . 5 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
43con2bii 357 . . . 4 (𝑥𝐵 ↔ ¬ 𝑥 ∈ (V ∖ 𝐵))
54anbi2i 623 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
6 eldif 3927 . . 3 (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
75, 6bitr4i 278 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)))
87ineqri 4178 1 (𝐴𝐵) = (𝐴 ∖ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-in 3924
This theorem is referenced by:  dfun3  4242  dfin3  4243  invdif  4245  difundi  4256  difindi  4258  difdif2  4262
  Copyright terms: Public domain W3C validator