MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin2 Structured version   Visualization version   GIF version

Theorem dfin2 4222
Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4221. Another version is given by dfin4 4229. (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfin2 (𝐴𝐵) = (𝐴 ∖ (V ∖ 𝐵))

Proof of Theorem dfin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . . 6 𝑥 ∈ V
2 eldif 3909 . . . . . 6 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
31, 2mpbiran 709 . . . . 5 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
43con2bii 357 . . . 4 (𝑥𝐵 ↔ ¬ 𝑥 ∈ (V ∖ 𝐵))
54anbi2i 623 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
6 eldif 3909 . . 3 (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵)))
75, 6bitr4i 278 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)))
87ineqri 4163 1 (𝐴𝐵) = (𝐴 ∖ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2113  Vcvv 3438  cdif 3896  cin 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3440  df-dif 3902  df-in 3906
This theorem is referenced by:  dfun3  4227  dfin3  4228  invdif  4230  difundi  4241  difindi  4243  difdif2  4247
  Copyright terms: Public domain W3C validator