![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfin2 | Structured version Visualization version GIF version |
Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4259. Another version is given by dfin4 4267. (Contributed by NM, 10-Jun-2004.) |
Ref | Expression |
---|---|
dfin2 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | eldif 3958 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | mpbiran 707 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥 ∈ 𝐵) |
4 | 3 | con2bii 357 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ (V ∖ 𝐵)) |
5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) |
6 | eldif 3958 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) | |
7 | 5, 6 | bitr4i 277 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵))) |
8 | 7 | ineqri 4204 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ∩ cin 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3951 df-in 3955 |
This theorem is referenced by: dfun3 4265 dfin3 4266 invdif 4268 difundi 4279 difindi 4281 difdif2 4286 |
Copyright terms: Public domain | W3C validator |