Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfin2 | Structured version Visualization version GIF version |
Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4204. Another version is given by dfin4 4212. (Contributed by NM, 10-Jun-2004.) |
Ref | Expression |
---|---|
dfin2 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3445 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | eldif 3907 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | mpbiran 706 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥 ∈ 𝐵) |
4 | 3 | con2bii 357 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ (V ∖ 𝐵)) |
5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) |
6 | eldif 3907 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) | |
7 | 5, 6 | bitr4i 277 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵))) |
8 | 7 | ineqri 4149 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∖ cdif 3894 ∩ cin 3896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-dif 3900 df-in 3904 |
This theorem is referenced by: dfun3 4210 dfin3 4211 invdif 4213 difundi 4224 difindi 4226 difdif2 4231 |
Copyright terms: Public domain | W3C validator |