Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt Structured version   Visualization version   GIF version

Theorem eulerpartlemt 31242
 Description: Lemma for eulerpart 31253. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemt ((ℕ0𝑚 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
Distinct variable groups:   𝑓,𝑚,𝐽   𝑅,𝑚   𝑇,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)

Proof of Theorem eulerpartlemt
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8285 . . . . . . . . . 10 (𝑜 ∈ (ℕ0𝑚 𝐽) → 𝑜:𝐽⟶ℕ0)
21adantr 481 . . . . . . . . 9 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → 𝑜:𝐽⟶ℕ0)
3 c0ex 10488 . . . . . . . . . . 11 0 ∈ V
43fconst 6440 . . . . . . . . . 10 ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}
54a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0})
6 disjdif 4341 . . . . . . . . . 10 (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅
76a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅)
8 fun 6415 . . . . . . . . 9 (((𝑜:𝐽⟶ℕ0 ∧ ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}) ∧ (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
92, 5, 7, 8syl21anc 834 . . . . . . . 8 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
10 eulerpart.j . . . . . . . . . . 11 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
11 ssrab2 3983 . . . . . . . . . . 11 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
1210, 11eqsstri 3928 . . . . . . . . . 10 𝐽 ⊆ ℕ
13 undif 4350 . . . . . . . . . 10 (𝐽 ⊆ ℕ ↔ (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ)
1412, 13mpbi 231 . . . . . . . . 9 (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ
15 0nn0 11766 . . . . . . . . . . 11 0 ∈ ℕ0
16 snssi 4654 . . . . . . . . . . 11 (0 ∈ ℕ0 → {0} ⊆ ℕ0)
1715, 16ax-mp 5 . . . . . . . . . 10 {0} ⊆ ℕ0
18 ssequn2 4086 . . . . . . . . . 10 ({0} ⊆ ℕ0 ↔ (ℕ0 ∪ {0}) = ℕ0)
1917, 18mpbi 231 . . . . . . . . 9 (ℕ0 ∪ {0}) = ℕ0
2014, 19feq23i 6383 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
219, 20sylib 219 . . . . . . 7 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
22 nn0ex 11757 . . . . . . . 8 0 ∈ V
23 nnex 11498 . . . . . . . 8 ℕ ∈ V
2422, 23elmap 8292 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0𝑚 ℕ) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
2521, 24sylibr 235 . . . . . 6 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0𝑚 ℕ))
26 cnvun 5884 . . . . . . . . 9 (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) = (𝑜((ℕ ∖ 𝐽) × {0}))
2726imaeq1i 5810 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ)
28 imaundir 5892 . . . . . . . 8 ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
2927, 28eqtri 2821 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
30 vex 3443 . . . . . . . . . . 11 𝑜 ∈ V
31 cnveq 5637 . . . . . . . . . . . . 13 (𝑓 = 𝑜𝑓 = 𝑜)
3231imaeq1d 5812 . . . . . . . . . . . 12 (𝑓 = 𝑜 → (𝑓 “ ℕ) = (𝑜 “ ℕ))
3332eleq1d 2869 . . . . . . . . . . 11 (𝑓 = 𝑜 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝑜 “ ℕ) ∈ Fin))
34 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
3530, 33, 34elab2 3611 . . . . . . . . . 10 (𝑜𝑅 ↔ (𝑜 “ ℕ) ∈ Fin)
3635biimpi 217 . . . . . . . . 9 (𝑜𝑅 → (𝑜 “ ℕ) ∈ Fin)
3736adantl 482 . . . . . . . 8 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ∈ Fin)
38 cnvxp 5897 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) × {0}) = ({0} × (ℕ ∖ 𝐽))
3938dmeqi 5666 . . . . . . . . . . . . 13 dom ((ℕ ∖ 𝐽) × {0}) = dom ({0} × (ℕ ∖ 𝐽))
40 2nn 11564 . . . . . . . . . . . . . . 15 2 ∈ ℕ
41 2z 11868 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
42 iddvds 15460 . . . . . . . . . . . . . . . . 17 (2 ∈ ℤ → 2 ∥ 2)
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 2 ∥ 2
44 breq2 4972 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 2 → (2 ∥ 𝑧 ↔ 2 ∥ 2))
4544notbid 319 . . . . . . . . . . . . . . . . . 18 (𝑧 = 2 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 2))
4645, 10elrab2 3624 . . . . . . . . . . . . . . . . 17 (2 ∈ 𝐽 ↔ (2 ∈ ℕ ∧ ¬ 2 ∥ 2))
4746simprbi 497 . . . . . . . . . . . . . . . 16 (2 ∈ 𝐽 → ¬ 2 ∥ 2)
4843, 47mt2 201 . . . . . . . . . . . . . . 15 ¬ 2 ∈ 𝐽
49 eldif 3875 . . . . . . . . . . . . . . 15 (2 ∈ (ℕ ∖ 𝐽) ↔ (2 ∈ ℕ ∧ ¬ 2 ∈ 𝐽))
5040, 48, 49mpbir2an 707 . . . . . . . . . . . . . 14 2 ∈ (ℕ ∖ 𝐽)
51 ne0i 4226 . . . . . . . . . . . . . 14 (2 ∈ (ℕ ∖ 𝐽) → (ℕ ∖ 𝐽) ≠ ∅)
52 dmxp 5688 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) ≠ ∅ → dom ({0} × (ℕ ∖ 𝐽)) = {0})
5350, 51, 52mp2b 10 . . . . . . . . . . . . 13 dom ({0} × (ℕ ∖ 𝐽)) = {0}
5439, 53eqtri 2821 . . . . . . . . . . . 12 dom ((ℕ ∖ 𝐽) × {0}) = {0}
5554ineq1i 4111 . . . . . . . . . . 11 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ({0} ∩ ℕ)
56 incom 4105 . . . . . . . . . . 11 (ℕ ∩ {0}) = ({0} ∩ ℕ)
57 0nnn 11527 . . . . . . . . . . . 12 ¬ 0 ∈ ℕ
58 disjsn 4560 . . . . . . . . . . . 12 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
5957, 58mpbir 232 . . . . . . . . . . 11 (ℕ ∩ {0}) = ∅
6055, 56, 593eqtr2i 2827 . . . . . . . . . 10 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅
61 imadisj 5831 . . . . . . . . . 10 ((((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅ ↔ (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅)
6260, 61mpbir 232 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅
63 0fin 8599 . . . . . . . . 9 ∅ ∈ Fin
6462, 63eqeltri 2881 . . . . . . . 8 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin
65 unfi 8638 . . . . . . . 8 (((𝑜 “ ℕ) ∈ Fin ∧ (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6637, 64, 65sylancl 586 . . . . . . 7 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6729, 66syl5eqel 2889 . . . . . 6 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin)
68 cnvimass 5832 . . . . . . . . 9 (𝑜 “ ℕ) ⊆ dom 𝑜
6968, 2fssdm 6405 . . . . . . . 8 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ⊆ 𝐽)
70 0ss 4276 . . . . . . . . . 10 ∅ ⊆ 𝐽
7162, 70eqsstri 3928 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽
7271a1i 11 . . . . . . . 8 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽)
7369, 72unssd 4089 . . . . . . 7 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ⊆ 𝐽)
7429, 73eqsstrid 3942 . . . . . 6 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽)
75 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
76 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
77 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
78 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
79 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
80 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
81 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
8275, 76, 77, 10, 78, 79, 80, 34, 81eulerpartlemt0 31240 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ↔ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0𝑚 ℕ) ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽))
8325, 67, 74, 82syl3anbrc 1336 . . . . 5 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅))
84 resundir 5756 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽) = ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽))
85 ffn 6389 . . . . . . . 8 (𝑜:𝐽⟶ℕ0𝑜 Fn 𝐽)
86 fnresdm 6343 . . . . . . . . 9 (𝑜 Fn 𝐽 → (𝑜𝐽) = 𝑜)
87 incom 4105 . . . . . . . . . . . 12 ((ℕ ∖ 𝐽) ∩ 𝐽) = (𝐽 ∩ (ℕ ∖ 𝐽))
8887, 6eqtri 2821 . . . . . . . . . . 11 ((ℕ ∖ 𝐽) ∩ 𝐽) = ∅
89 fnconstg 6442 . . . . . . . . . . . 12 (0 ∈ ℕ0 → ((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽))
90 fnresdisj 6344 . . . . . . . . . . . 12 (((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽) → (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅))
9115, 89, 90mp2b 10 . . . . . . . . . . 11 (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9288, 91mpbi 231 . . . . . . . . . 10 (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅
9392a1i 11 . . . . . . . . 9 (𝑜 Fn 𝐽 → (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9486, 93uneq12d 4067 . . . . . . . 8 (𝑜 Fn 𝐽 → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
952, 85, 943syl 18 . . . . . . 7 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
96 un0 4270 . . . . . . 7 (𝑜 ∪ ∅) = 𝑜
9795, 96syl6eq 2849 . . . . . 6 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = 𝑜)
9884, 97syl5req 2846 . . . . 5 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
99 reseq1 5735 . . . . . 6 (𝑚 = (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) → (𝑚𝐽) = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
10099rspceeqv 3579 . . . . 5 (((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ∧ 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽)) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
10183, 98, 100syl2anc 584 . . . 4 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
102 simpr 485 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 = (𝑚𝐽))
103 simpl 483 . . . . . . . . . . . 12 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (𝑇𝑅))
10475, 76, 77, 10, 78, 79, 80, 34, 81eulerpartlemt0 31240 . . . . . . . . . . . 12 (𝑚 ∈ (𝑇𝑅) ↔ (𝑚 ∈ (ℕ0𝑚 ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
105103, 104sylib 219 . . . . . . . . . . 11 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 ∈ (ℕ0𝑚 ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
106105simp1d 1135 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (ℕ0𝑚 ℕ))
10722, 23elmap 8292 . . . . . . . . . 10 (𝑚 ∈ (ℕ0𝑚 ℕ) ↔ 𝑚:ℕ⟶ℕ0)
108106, 107sylib 219 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚:ℕ⟶ℕ0)
109 fssres 6419 . . . . . . . . 9 ((𝑚:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝑚𝐽):𝐽⟶ℕ0)
110108, 12, 109sylancl 586 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽):𝐽⟶ℕ0)
11110, 23rabex2 5135 . . . . . . . . 9 𝐽 ∈ V
11222, 111elmap 8292 . . . . . . . 8 ((𝑚𝐽) ∈ (ℕ0𝑚 𝐽) ↔ (𝑚𝐽):𝐽⟶ℕ0)
113110, 112sylibr 235 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ (ℕ0𝑚 𝐽))
114102, 113eqeltrd 2885 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 ∈ (ℕ0𝑚 𝐽))
115 ffun 6392 . . . . . . . . . 10 (𝑚:ℕ⟶ℕ0 → Fun 𝑚)
116 respreima 6708 . . . . . . . . . 10 (Fun 𝑚 → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
117108, 115, 1163syl 18 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
118105simp2d 1136 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 “ ℕ) ∈ Fin)
119 infi 8595 . . . . . . . . . 10 ((𝑚 “ ℕ) ∈ Fin → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
120118, 119syl 17 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
121117, 120eqeltrd 2885 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) ∈ Fin)
122 vex 3443 . . . . . . . . . 10 𝑚 ∈ V
123122resex 5787 . . . . . . . . 9 (𝑚𝐽) ∈ V
124 cnveq 5637 . . . . . . . . . . 11 (𝑓 = (𝑚𝐽) → 𝑓 = (𝑚𝐽))
125124imaeq1d 5812 . . . . . . . . . 10 (𝑓 = (𝑚𝐽) → (𝑓 “ ℕ) = ((𝑚𝐽) “ ℕ))
126125eleq1d 2869 . . . . . . . . 9 (𝑓 = (𝑚𝐽) → ((𝑓 “ ℕ) ∈ Fin ↔ ((𝑚𝐽) “ ℕ) ∈ Fin))
127123, 126, 34elab2 3611 . . . . . . . 8 ((𝑚𝐽) ∈ 𝑅 ↔ ((𝑚𝐽) “ ℕ) ∈ Fin)
128121, 127sylibr 235 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ 𝑅)
129102, 128eqeltrd 2885 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜𝑅)
130114, 129jca 512 . . . . 5 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅))
131130rexlimiva 3246 . . . 4 (∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽) → (𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅))
132101, 131impbii 210 . . 3 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) ↔ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
133132abbii 2863 . 2 {𝑜 ∣ (𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅)} = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
134 df-in 3872 . 2 ((ℕ0𝑚 𝐽) ∩ 𝑅) = {𝑜 ∣ (𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅)}
135 eqid 2797 . . 3 (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
136135rnmpt 5716 . 2 ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
137133, 134, 1363eqtr4i 2831 1 ((ℕ0𝑚 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 207   ∧ wa 396   ∧ w3a 1080   = wceq 1525   ∈ wcel 2083  {cab 2777   ≠ wne 2986  ∀wral 3107  ∃wrex 3108  {crab 3111   ∖ cdif 3862   ∪ cun 3863   ∩ cin 3864   ⊆ wss 3865  ∅c0 4217  𝒫 cpw 4459  {csn 4478   class class class wbr 4968  {copab 5030   ↦ cmpt 5047   × cxp 5448  ◡ccnv 5449  dom cdm 5450  ran crn 5451   ↾ cres 5452   “ cima 5453  Fun wfun 6226   Fn wfn 6227  ⟶wf 6228  ‘cfv 6232  (class class class)co 7023   ∈ cmpo 7025   supp csupp 7688   ↑𝑚 cmap 8263  Fincfn 8364  0cc0 10390  1c1 10391   · cmul 10395   ≤ cle 10529  ℕcn 11492  2c2 11546  ℕ0cn0 11751  ℤcz 11835  ↑cexp 13283  Σcsu 14880   ∥ cdvds 15444 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-oadd 7964  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-neg 10726  df-nn 11493  df-2 11554  df-n0 11752  df-z 11836  df-dvds 15445 This theorem is referenced by:  eulerpartgbij  31243
 Copyright terms: Public domain W3C validator