Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt Structured version   Visualization version   GIF version

Theorem eulerpartlemt 34362
Description: Lemma for eulerpart 34373. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemt ((ℕ0m 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
Distinct variable groups:   𝑓,𝑚,𝐽   𝑅,𝑚   𝑇,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)

Proof of Theorem eulerpartlemt
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8822 . . . . . . . . . 10 (𝑜 ∈ (ℕ0m 𝐽) → 𝑜:𝐽⟶ℕ0)
21adantr 480 . . . . . . . . 9 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → 𝑜:𝐽⟶ℕ0)
3 c0ex 11168 . . . . . . . . . . 11 0 ∈ V
43fconst 6746 . . . . . . . . . 10 ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}
54a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0})
6 disjdif 4435 . . . . . . . . . 10 (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅
76a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅)
8 fun 6722 . . . . . . . . 9 (((𝑜:𝐽⟶ℕ0 ∧ ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}) ∧ (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
92, 5, 7, 8syl21anc 837 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
10 eulerpart.j . . . . . . . . . . 11 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
11 ssrab2 4043 . . . . . . . . . . 11 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
1210, 11eqsstri 3993 . . . . . . . . . 10 𝐽 ⊆ ℕ
13 undif 4445 . . . . . . . . . 10 (𝐽 ⊆ ℕ ↔ (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ)
1412, 13mpbi 230 . . . . . . . . 9 (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ
15 0nn0 12457 . . . . . . . . . . 11 0 ∈ ℕ0
16 snssi 4772 . . . . . . . . . . 11 (0 ∈ ℕ0 → {0} ⊆ ℕ0)
1715, 16ax-mp 5 . . . . . . . . . 10 {0} ⊆ ℕ0
18 ssequn2 4152 . . . . . . . . . 10 ({0} ⊆ ℕ0 ↔ (ℕ0 ∪ {0}) = ℕ0)
1917, 18mpbi 230 . . . . . . . . 9 (ℕ0 ∪ {0}) = ℕ0
2014, 19feq23i 6682 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
219, 20sylib 218 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
22 nn0ex 12448 . . . . . . . 8 0 ∈ V
23 nnex 12192 . . . . . . . 8 ℕ ∈ V
2422, 23elmap 8844 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0m ℕ) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
2521, 24sylibr 234 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0m ℕ))
26 cnvun 6115 . . . . . . . . 9 (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) = (𝑜((ℕ ∖ 𝐽) × {0}))
2726imaeq1i 6028 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ)
28 imaundir 6123 . . . . . . . 8 ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
2927, 28eqtri 2752 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
30 vex 3451 . . . . . . . . . . 11 𝑜 ∈ V
31 cnveq 5837 . . . . . . . . . . . . 13 (𝑓 = 𝑜𝑓 = 𝑜)
3231imaeq1d 6030 . . . . . . . . . . . 12 (𝑓 = 𝑜 → (𝑓 “ ℕ) = (𝑜 “ ℕ))
3332eleq1d 2813 . . . . . . . . . . 11 (𝑓 = 𝑜 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝑜 “ ℕ) ∈ Fin))
34 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
3530, 33, 34elab2 3649 . . . . . . . . . 10 (𝑜𝑅 ↔ (𝑜 “ ℕ) ∈ Fin)
3635biimpi 216 . . . . . . . . 9 (𝑜𝑅 → (𝑜 “ ℕ) ∈ Fin)
3736adantl 481 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ∈ Fin)
38 cnvxp 6130 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) × {0}) = ({0} × (ℕ ∖ 𝐽))
3938dmeqi 5868 . . . . . . . . . . . . 13 dom ((ℕ ∖ 𝐽) × {0}) = dom ({0} × (ℕ ∖ 𝐽))
40 2nn 12259 . . . . . . . . . . . . . . 15 2 ∈ ℕ
41 2z 12565 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
42 iddvds 16239 . . . . . . . . . . . . . . . . 17 (2 ∈ ℤ → 2 ∥ 2)
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 2 ∥ 2
44 breq2 5111 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 2 → (2 ∥ 𝑧 ↔ 2 ∥ 2))
4544notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑧 = 2 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 2))
4645, 10elrab2 3662 . . . . . . . . . . . . . . . . 17 (2 ∈ 𝐽 ↔ (2 ∈ ℕ ∧ ¬ 2 ∥ 2))
4746simprbi 496 . . . . . . . . . . . . . . . 16 (2 ∈ 𝐽 → ¬ 2 ∥ 2)
4843, 47mt2 200 . . . . . . . . . . . . . . 15 ¬ 2 ∈ 𝐽
49 eldif 3924 . . . . . . . . . . . . . . 15 (2 ∈ (ℕ ∖ 𝐽) ↔ (2 ∈ ℕ ∧ ¬ 2 ∈ 𝐽))
5040, 48, 49mpbir2an 711 . . . . . . . . . . . . . 14 2 ∈ (ℕ ∖ 𝐽)
51 ne0i 4304 . . . . . . . . . . . . . 14 (2 ∈ (ℕ ∖ 𝐽) → (ℕ ∖ 𝐽) ≠ ∅)
52 dmxp 5892 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) ≠ ∅ → dom ({0} × (ℕ ∖ 𝐽)) = {0})
5350, 51, 52mp2b 10 . . . . . . . . . . . . 13 dom ({0} × (ℕ ∖ 𝐽)) = {0}
5439, 53eqtri 2752 . . . . . . . . . . . 12 dom ((ℕ ∖ 𝐽) × {0}) = {0}
5554ineq1i 4179 . . . . . . . . . . 11 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ({0} ∩ ℕ)
56 incom 4172 . . . . . . . . . . 11 (ℕ ∩ {0}) = ({0} ∩ ℕ)
57 0nnn 12222 . . . . . . . . . . . 12 ¬ 0 ∈ ℕ
58 disjsn 4675 . . . . . . . . . . . 12 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
5957, 58mpbir 231 . . . . . . . . . . 11 (ℕ ∩ {0}) = ∅
6055, 56, 593eqtr2i 2758 . . . . . . . . . 10 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅
61 imadisj 6051 . . . . . . . . . 10 ((((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅ ↔ (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅)
6260, 61mpbir 231 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅
63 0fi 9013 . . . . . . . . 9 ∅ ∈ Fin
6462, 63eqeltri 2824 . . . . . . . 8 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin
65 unfi 9135 . . . . . . . 8 (((𝑜 “ ℕ) ∈ Fin ∧ (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6637, 64, 65sylancl 586 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6729, 66eqeltrid 2832 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin)
68 cnvimass 6053 . . . . . . . . 9 (𝑜 “ ℕ) ⊆ dom 𝑜
6968, 2fssdm 6707 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ⊆ 𝐽)
70 0ss 4363 . . . . . . . . . 10 ∅ ⊆ 𝐽
7162, 70eqsstri 3993 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽
7271a1i 11 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽)
7369, 72unssd 4155 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ⊆ 𝐽)
7429, 73eqsstrid 3985 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽)
75 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
76 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
77 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
78 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
79 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
80 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
81 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
8275, 76, 77, 10, 78, 79, 80, 34, 81eulerpartlemt0 34360 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ↔ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0m ℕ) ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽))
8325, 67, 74, 82syl3anbrc 1344 . . . . 5 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅))
84 resundir 5965 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽) = ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽))
85 ffn 6688 . . . . . . . 8 (𝑜:𝐽⟶ℕ0𝑜 Fn 𝐽)
86 fnresdm 6637 . . . . . . . . 9 (𝑜 Fn 𝐽 → (𝑜𝐽) = 𝑜)
87 disjdifr 4436 . . . . . . . . . . 11 ((ℕ ∖ 𝐽) ∩ 𝐽) = ∅
88 fnconstg 6748 . . . . . . . . . . . 12 (0 ∈ ℕ0 → ((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽))
89 fnresdisj 6638 . . . . . . . . . . . 12 (((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽) → (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅))
9015, 88, 89mp2b 10 . . . . . . . . . . 11 (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9187, 90mpbi 230 . . . . . . . . . 10 (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅
9291a1i 11 . . . . . . . . 9 (𝑜 Fn 𝐽 → (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9386, 92uneq12d 4132 . . . . . . . 8 (𝑜 Fn 𝐽 → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
942, 85, 933syl 18 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
95 un0 4357 . . . . . . 7 (𝑜 ∪ ∅) = 𝑜
9694, 95eqtrdi 2780 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = 𝑜)
9784, 96eqtr2id 2777 . . . . 5 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
98 reseq1 5944 . . . . . 6 (𝑚 = (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) → (𝑚𝐽) = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
9998rspceeqv 3611 . . . . 5 (((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ∧ 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽)) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
10083, 97, 99syl2anc 584 . . . 4 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
101 simpr 484 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 = (𝑚𝐽))
102 simpl 482 . . . . . . . . . . . 12 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (𝑇𝑅))
10375, 76, 77, 10, 78, 79, 80, 34, 81eulerpartlemt0 34360 . . . . . . . . . . . 12 (𝑚 ∈ (𝑇𝑅) ↔ (𝑚 ∈ (ℕ0m ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
104102, 103sylib 218 . . . . . . . . . . 11 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 ∈ (ℕ0m ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
105104simp1d 1142 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (ℕ0m ℕ))
10622, 23elmap 8844 . . . . . . . . . 10 (𝑚 ∈ (ℕ0m ℕ) ↔ 𝑚:ℕ⟶ℕ0)
107105, 106sylib 218 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚:ℕ⟶ℕ0)
108 fssres 6726 . . . . . . . . 9 ((𝑚:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝑚𝐽):𝐽⟶ℕ0)
109107, 12, 108sylancl 586 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽):𝐽⟶ℕ0)
11010, 23rabex2 5296 . . . . . . . . 9 𝐽 ∈ V
11122, 110elmap 8844 . . . . . . . 8 ((𝑚𝐽) ∈ (ℕ0m 𝐽) ↔ (𝑚𝐽):𝐽⟶ℕ0)
112109, 111sylibr 234 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ (ℕ0m 𝐽))
113101, 112eqeltrd 2828 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 ∈ (ℕ0m 𝐽))
114 ffun 6691 . . . . . . . . . 10 (𝑚:ℕ⟶ℕ0 → Fun 𝑚)
115 respreima 7038 . . . . . . . . . 10 (Fun 𝑚 → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
116107, 114, 1153syl 18 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
117104simp2d 1143 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 “ ℕ) ∈ Fin)
118 infi 9213 . . . . . . . . . 10 ((𝑚 “ ℕ) ∈ Fin → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
119117, 118syl 17 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
120116, 119eqeltrd 2828 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) ∈ Fin)
121 vex 3451 . . . . . . . . . 10 𝑚 ∈ V
122121resex 6000 . . . . . . . . 9 (𝑚𝐽) ∈ V
123 cnveq 5837 . . . . . . . . . . 11 (𝑓 = (𝑚𝐽) → 𝑓 = (𝑚𝐽))
124123imaeq1d 6030 . . . . . . . . . 10 (𝑓 = (𝑚𝐽) → (𝑓 “ ℕ) = ((𝑚𝐽) “ ℕ))
125124eleq1d 2813 . . . . . . . . 9 (𝑓 = (𝑚𝐽) → ((𝑓 “ ℕ) ∈ Fin ↔ ((𝑚𝐽) “ ℕ) ∈ Fin))
126122, 125, 34elab2 3649 . . . . . . . 8 ((𝑚𝐽) ∈ 𝑅 ↔ ((𝑚𝐽) “ ℕ) ∈ Fin)
127120, 126sylibr 234 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ 𝑅)
128101, 127eqeltrd 2828 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜𝑅)
129113, 128jca 511 . . . . 5 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅))
130129rexlimiva 3126 . . . 4 (∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽) → (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅))
131100, 130impbii 209 . . 3 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) ↔ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
132131abbii 2796 . 2 {𝑜 ∣ (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅)} = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
133 df-in 3921 . 2 ((ℕ0m 𝐽) ∩ 𝑅) = {𝑜 ∣ (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅)}
134 eqid 2729 . . 3 (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
135134rnmpt 5921 . 2 ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
136132, 133, 1353eqtr4i 2762 1 ((ℕ0m 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3405  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  {copab 5169  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389   supp csupp 8139  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069   · cmul 11073  cle 11209  cn 12186  2c2 12241  0cn0 12442  cz 12529  cexp 14026  Σcsu 15652  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-dvds 16223
This theorem is referenced by:  eulerpartgbij  34363
  Copyright terms: Public domain W3C validator