Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt Structured version   Visualization version   GIF version

Theorem eulerpartlemt 34374
Description: Lemma for eulerpart 34385. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemt ((ℕ0m 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
Distinct variable groups:   𝑓,𝑚,𝐽   𝑅,𝑚   𝑇,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)

Proof of Theorem eulerpartlemt
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8768 . . . . . . . . . 10 (𝑜 ∈ (ℕ0m 𝐽) → 𝑜:𝐽⟶ℕ0)
21adantr 480 . . . . . . . . 9 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → 𝑜:𝐽⟶ℕ0)
3 c0ex 11098 . . . . . . . . . . 11 0 ∈ V
43fconst 6705 . . . . . . . . . 10 ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}
54a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0})
6 disjdif 4420 . . . . . . . . . 10 (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅
76a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅)
8 fun 6681 . . . . . . . . 9 (((𝑜:𝐽⟶ℕ0 ∧ ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}) ∧ (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
92, 5, 7, 8syl21anc 837 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
10 eulerpart.j . . . . . . . . . . 11 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
11 ssrab2 4028 . . . . . . . . . . 11 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
1210, 11eqsstri 3979 . . . . . . . . . 10 𝐽 ⊆ ℕ
13 undif 4430 . . . . . . . . . 10 (𝐽 ⊆ ℕ ↔ (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ)
1412, 13mpbi 230 . . . . . . . . 9 (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ
15 0nn0 12388 . . . . . . . . . . 11 0 ∈ ℕ0
16 snssi 4758 . . . . . . . . . . 11 (0 ∈ ℕ0 → {0} ⊆ ℕ0)
1715, 16ax-mp 5 . . . . . . . . . 10 {0} ⊆ ℕ0
18 ssequn2 4137 . . . . . . . . . 10 ({0} ⊆ ℕ0 ↔ (ℕ0 ∪ {0}) = ℕ0)
1917, 18mpbi 230 . . . . . . . . 9 (ℕ0 ∪ {0}) = ℕ0
2014, 19feq23i 6641 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
219, 20sylib 218 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
22 nn0ex 12379 . . . . . . . 8 0 ∈ V
23 nnex 12123 . . . . . . . 8 ℕ ∈ V
2422, 23elmap 8790 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0m ℕ) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
2521, 24sylibr 234 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0m ℕ))
26 cnvun 6086 . . . . . . . . 9 (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) = (𝑜((ℕ ∖ 𝐽) × {0}))
2726imaeq1i 6003 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ)
28 imaundir 6094 . . . . . . . 8 ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
2927, 28eqtri 2753 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
30 vex 3438 . . . . . . . . . . 11 𝑜 ∈ V
31 cnveq 5811 . . . . . . . . . . . . 13 (𝑓 = 𝑜𝑓 = 𝑜)
3231imaeq1d 6005 . . . . . . . . . . . 12 (𝑓 = 𝑜 → (𝑓 “ ℕ) = (𝑜 “ ℕ))
3332eleq1d 2814 . . . . . . . . . . 11 (𝑓 = 𝑜 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝑜 “ ℕ) ∈ Fin))
34 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
3530, 33, 34elab2 3636 . . . . . . . . . 10 (𝑜𝑅 ↔ (𝑜 “ ℕ) ∈ Fin)
3635biimpi 216 . . . . . . . . 9 (𝑜𝑅 → (𝑜 “ ℕ) ∈ Fin)
3736adantl 481 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ∈ Fin)
38 cnvxp 6101 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) × {0}) = ({0} × (ℕ ∖ 𝐽))
3938dmeqi 5842 . . . . . . . . . . . . 13 dom ((ℕ ∖ 𝐽) × {0}) = dom ({0} × (ℕ ∖ 𝐽))
40 2nn 12190 . . . . . . . . . . . . . . 15 2 ∈ ℕ
41 2z 12496 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
42 iddvds 16172 . . . . . . . . . . . . . . . . 17 (2 ∈ ℤ → 2 ∥ 2)
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 2 ∥ 2
44 breq2 5093 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 2 → (2 ∥ 𝑧 ↔ 2 ∥ 2))
4544notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑧 = 2 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 2))
4645, 10elrab2 3648 . . . . . . . . . . . . . . . . 17 (2 ∈ 𝐽 ↔ (2 ∈ ℕ ∧ ¬ 2 ∥ 2))
4746simprbi 496 . . . . . . . . . . . . . . . 16 (2 ∈ 𝐽 → ¬ 2 ∥ 2)
4843, 47mt2 200 . . . . . . . . . . . . . . 15 ¬ 2 ∈ 𝐽
49 eldif 3910 . . . . . . . . . . . . . . 15 (2 ∈ (ℕ ∖ 𝐽) ↔ (2 ∈ ℕ ∧ ¬ 2 ∈ 𝐽))
5040, 48, 49mpbir2an 711 . . . . . . . . . . . . . 14 2 ∈ (ℕ ∖ 𝐽)
51 ne0i 4289 . . . . . . . . . . . . . 14 (2 ∈ (ℕ ∖ 𝐽) → (ℕ ∖ 𝐽) ≠ ∅)
52 dmxp 5866 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) ≠ ∅ → dom ({0} × (ℕ ∖ 𝐽)) = {0})
5350, 51, 52mp2b 10 . . . . . . . . . . . . 13 dom ({0} × (ℕ ∖ 𝐽)) = {0}
5439, 53eqtri 2753 . . . . . . . . . . . 12 dom ((ℕ ∖ 𝐽) × {0}) = {0}
5554ineq1i 4164 . . . . . . . . . . 11 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ({0} ∩ ℕ)
56 incom 4157 . . . . . . . . . . 11 (ℕ ∩ {0}) = ({0} ∩ ℕ)
57 0nnn 12153 . . . . . . . . . . . 12 ¬ 0 ∈ ℕ
58 disjsn 4662 . . . . . . . . . . . 12 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
5957, 58mpbir 231 . . . . . . . . . . 11 (ℕ ∩ {0}) = ∅
6055, 56, 593eqtr2i 2759 . . . . . . . . . 10 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅
61 imadisj 6026 . . . . . . . . . 10 ((((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅ ↔ (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅)
6260, 61mpbir 231 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅
63 0fi 8959 . . . . . . . . 9 ∅ ∈ Fin
6462, 63eqeltri 2825 . . . . . . . 8 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin
65 unfi 9075 . . . . . . . 8 (((𝑜 “ ℕ) ∈ Fin ∧ (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6637, 64, 65sylancl 586 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6729, 66eqeltrid 2833 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin)
68 cnvimass 6028 . . . . . . . . 9 (𝑜 “ ℕ) ⊆ dom 𝑜
6968, 2fssdm 6666 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ⊆ 𝐽)
70 0ss 4348 . . . . . . . . . 10 ∅ ⊆ 𝐽
7162, 70eqsstri 3979 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽
7271a1i 11 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽)
7369, 72unssd 4140 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ⊆ 𝐽)
7429, 73eqsstrid 3971 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽)
75 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
76 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
77 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
78 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
79 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
80 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
81 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
8275, 76, 77, 10, 78, 79, 80, 34, 81eulerpartlemt0 34372 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ↔ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0m ℕ) ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽))
8325, 67, 74, 82syl3anbrc 1344 . . . . 5 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅))
84 resundir 5940 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽) = ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽))
85 ffn 6647 . . . . . . . 8 (𝑜:𝐽⟶ℕ0𝑜 Fn 𝐽)
86 fnresdm 6596 . . . . . . . . 9 (𝑜 Fn 𝐽 → (𝑜𝐽) = 𝑜)
87 disjdifr 4421 . . . . . . . . . . 11 ((ℕ ∖ 𝐽) ∩ 𝐽) = ∅
88 fnconstg 6707 . . . . . . . . . . . 12 (0 ∈ ℕ0 → ((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽))
89 fnresdisj 6597 . . . . . . . . . . . 12 (((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽) → (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅))
9015, 88, 89mp2b 10 . . . . . . . . . . 11 (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9187, 90mpbi 230 . . . . . . . . . 10 (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅
9291a1i 11 . . . . . . . . 9 (𝑜 Fn 𝐽 → (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9386, 92uneq12d 4117 . . . . . . . 8 (𝑜 Fn 𝐽 → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
942, 85, 933syl 18 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
95 un0 4342 . . . . . . 7 (𝑜 ∪ ∅) = 𝑜
9694, 95eqtrdi 2781 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = 𝑜)
9784, 96eqtr2id 2778 . . . . 5 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
98 reseq1 5919 . . . . . 6 (𝑚 = (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) → (𝑚𝐽) = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
9998rspceeqv 3598 . . . . 5 (((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ∧ 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽)) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
10083, 97, 99syl2anc 584 . . . 4 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
101 simpr 484 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 = (𝑚𝐽))
102 simpl 482 . . . . . . . . . . . 12 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (𝑇𝑅))
10375, 76, 77, 10, 78, 79, 80, 34, 81eulerpartlemt0 34372 . . . . . . . . . . . 12 (𝑚 ∈ (𝑇𝑅) ↔ (𝑚 ∈ (ℕ0m ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
104102, 103sylib 218 . . . . . . . . . . 11 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 ∈ (ℕ0m ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
105104simp1d 1142 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (ℕ0m ℕ))
10622, 23elmap 8790 . . . . . . . . . 10 (𝑚 ∈ (ℕ0m ℕ) ↔ 𝑚:ℕ⟶ℕ0)
107105, 106sylib 218 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚:ℕ⟶ℕ0)
108 fssres 6685 . . . . . . . . 9 ((𝑚:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝑚𝐽):𝐽⟶ℕ0)
109107, 12, 108sylancl 586 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽):𝐽⟶ℕ0)
11010, 23rabex2 5277 . . . . . . . . 9 𝐽 ∈ V
11122, 110elmap 8790 . . . . . . . 8 ((𝑚𝐽) ∈ (ℕ0m 𝐽) ↔ (𝑚𝐽):𝐽⟶ℕ0)
112109, 111sylibr 234 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ (ℕ0m 𝐽))
113101, 112eqeltrd 2829 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 ∈ (ℕ0m 𝐽))
114 ffun 6650 . . . . . . . . . 10 (𝑚:ℕ⟶ℕ0 → Fun 𝑚)
115 respreima 6994 . . . . . . . . . 10 (Fun 𝑚 → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
116107, 114, 1153syl 18 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
117104simp2d 1143 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 “ ℕ) ∈ Fin)
118 infi 9149 . . . . . . . . . 10 ((𝑚 “ ℕ) ∈ Fin → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
119117, 118syl 17 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
120116, 119eqeltrd 2829 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) ∈ Fin)
121 vex 3438 . . . . . . . . . 10 𝑚 ∈ V
122121resex 5975 . . . . . . . . 9 (𝑚𝐽) ∈ V
123 cnveq 5811 . . . . . . . . . . 11 (𝑓 = (𝑚𝐽) → 𝑓 = (𝑚𝐽))
124123imaeq1d 6005 . . . . . . . . . 10 (𝑓 = (𝑚𝐽) → (𝑓 “ ℕ) = ((𝑚𝐽) “ ℕ))
125124eleq1d 2814 . . . . . . . . 9 (𝑓 = (𝑚𝐽) → ((𝑓 “ ℕ) ∈ Fin ↔ ((𝑚𝐽) “ ℕ) ∈ Fin))
126122, 125, 34elab2 3636 . . . . . . . 8 ((𝑚𝐽) ∈ 𝑅 ↔ ((𝑚𝐽) “ ℕ) ∈ Fin)
127120, 126sylibr 234 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ 𝑅)
128101, 127eqeltrd 2829 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜𝑅)
129113, 128jca 511 . . . . 5 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅))
130129rexlimiva 3123 . . . 4 (∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽) → (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅))
131100, 130impbii 209 . . 3 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) ↔ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
132131abbii 2797 . 2 {𝑜 ∣ (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅)} = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
133 df-in 3907 . 2 ((ℕ0m 𝐽) ∩ 𝑅) = {𝑜 ∣ (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅)}
134 eqid 2730 . . 3 (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
135134rnmpt 5894 . 2 ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
136132, 133, 1353eqtr4i 2763 1 ((ℕ0m 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3393  cdif 3897  cun 3898  cin 3899  wss 3900  c0 4281  𝒫 cpw 4548  {csn 4574   class class class wbr 5089  {copab 5151  cmpt 5170   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  cima 5617  Fun wfun 6471   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  cmpo 7343   supp csupp 8085  m cmap 8745  Fincfn 8864  0cc0 10998  1c1 10999   · cmul 11003  cle 11139  cn 12117  2c2 12172  0cn0 12373  cz 12460  cexp 13960  Σcsu 15585  cdvds 16155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-dvds 16156
This theorem is referenced by:  eulerpartgbij  34375
  Copyright terms: Public domain W3C validator