Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt Structured version   Visualization version   GIF version

Theorem eulerpartlemt 34373
Description: Lemma for eulerpart 34384. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemt ((ℕ0m 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
Distinct variable groups:   𝑓,𝑚,𝐽   𝑅,𝑚   𝑇,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)

Proof of Theorem eulerpartlemt
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8889 . . . . . . . . . 10 (𝑜 ∈ (ℕ0m 𝐽) → 𝑜:𝐽⟶ℕ0)
21adantr 480 . . . . . . . . 9 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → 𝑜:𝐽⟶ℕ0)
3 c0ex 11255 . . . . . . . . . . 11 0 ∈ V
43fconst 6794 . . . . . . . . . 10 ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}
54a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0})
6 disjdif 4472 . . . . . . . . . 10 (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅
76a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅)
8 fun 6770 . . . . . . . . 9 (((𝑜:𝐽⟶ℕ0 ∧ ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}) ∧ (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
92, 5, 7, 8syl21anc 838 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
10 eulerpart.j . . . . . . . . . . 11 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
11 ssrab2 4080 . . . . . . . . . . 11 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
1210, 11eqsstri 4030 . . . . . . . . . 10 𝐽 ⊆ ℕ
13 undif 4482 . . . . . . . . . 10 (𝐽 ⊆ ℕ ↔ (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ)
1412, 13mpbi 230 . . . . . . . . 9 (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ
15 0nn0 12541 . . . . . . . . . . 11 0 ∈ ℕ0
16 snssi 4808 . . . . . . . . . . 11 (0 ∈ ℕ0 → {0} ⊆ ℕ0)
1715, 16ax-mp 5 . . . . . . . . . 10 {0} ⊆ ℕ0
18 ssequn2 4189 . . . . . . . . . 10 ({0} ⊆ ℕ0 ↔ (ℕ0 ∪ {0}) = ℕ0)
1917, 18mpbi 230 . . . . . . . . 9 (ℕ0 ∪ {0}) = ℕ0
2014, 19feq23i 6730 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
219, 20sylib 218 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
22 nn0ex 12532 . . . . . . . 8 0 ∈ V
23 nnex 12272 . . . . . . . 8 ℕ ∈ V
2422, 23elmap 8911 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0m ℕ) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
2521, 24sylibr 234 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0m ℕ))
26 cnvun 6162 . . . . . . . . 9 (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) = (𝑜((ℕ ∖ 𝐽) × {0}))
2726imaeq1i 6075 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ)
28 imaundir 6170 . . . . . . . 8 ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
2927, 28eqtri 2765 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
30 vex 3484 . . . . . . . . . . 11 𝑜 ∈ V
31 cnveq 5884 . . . . . . . . . . . . 13 (𝑓 = 𝑜𝑓 = 𝑜)
3231imaeq1d 6077 . . . . . . . . . . . 12 (𝑓 = 𝑜 → (𝑓 “ ℕ) = (𝑜 “ ℕ))
3332eleq1d 2826 . . . . . . . . . . 11 (𝑓 = 𝑜 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝑜 “ ℕ) ∈ Fin))
34 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
3530, 33, 34elab2 3682 . . . . . . . . . 10 (𝑜𝑅 ↔ (𝑜 “ ℕ) ∈ Fin)
3635biimpi 216 . . . . . . . . 9 (𝑜𝑅 → (𝑜 “ ℕ) ∈ Fin)
3736adantl 481 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ∈ Fin)
38 cnvxp 6177 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) × {0}) = ({0} × (ℕ ∖ 𝐽))
3938dmeqi 5915 . . . . . . . . . . . . 13 dom ((ℕ ∖ 𝐽) × {0}) = dom ({0} × (ℕ ∖ 𝐽))
40 2nn 12339 . . . . . . . . . . . . . . 15 2 ∈ ℕ
41 2z 12649 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
42 iddvds 16307 . . . . . . . . . . . . . . . . 17 (2 ∈ ℤ → 2 ∥ 2)
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 2 ∥ 2
44 breq2 5147 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 2 → (2 ∥ 𝑧 ↔ 2 ∥ 2))
4544notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑧 = 2 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 2))
4645, 10elrab2 3695 . . . . . . . . . . . . . . . . 17 (2 ∈ 𝐽 ↔ (2 ∈ ℕ ∧ ¬ 2 ∥ 2))
4746simprbi 496 . . . . . . . . . . . . . . . 16 (2 ∈ 𝐽 → ¬ 2 ∥ 2)
4843, 47mt2 200 . . . . . . . . . . . . . . 15 ¬ 2 ∈ 𝐽
49 eldif 3961 . . . . . . . . . . . . . . 15 (2 ∈ (ℕ ∖ 𝐽) ↔ (2 ∈ ℕ ∧ ¬ 2 ∈ 𝐽))
5040, 48, 49mpbir2an 711 . . . . . . . . . . . . . 14 2 ∈ (ℕ ∖ 𝐽)
51 ne0i 4341 . . . . . . . . . . . . . 14 (2 ∈ (ℕ ∖ 𝐽) → (ℕ ∖ 𝐽) ≠ ∅)
52 dmxp 5939 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) ≠ ∅ → dom ({0} × (ℕ ∖ 𝐽)) = {0})
5350, 51, 52mp2b 10 . . . . . . . . . . . . 13 dom ({0} × (ℕ ∖ 𝐽)) = {0}
5439, 53eqtri 2765 . . . . . . . . . . . 12 dom ((ℕ ∖ 𝐽) × {0}) = {0}
5554ineq1i 4216 . . . . . . . . . . 11 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ({0} ∩ ℕ)
56 incom 4209 . . . . . . . . . . 11 (ℕ ∩ {0}) = ({0} ∩ ℕ)
57 0nnn 12302 . . . . . . . . . . . 12 ¬ 0 ∈ ℕ
58 disjsn 4711 . . . . . . . . . . . 12 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
5957, 58mpbir 231 . . . . . . . . . . 11 (ℕ ∩ {0}) = ∅
6055, 56, 593eqtr2i 2771 . . . . . . . . . 10 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅
61 imadisj 6098 . . . . . . . . . 10 ((((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅ ↔ (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅)
6260, 61mpbir 231 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅
63 0fi 9082 . . . . . . . . 9 ∅ ∈ Fin
6462, 63eqeltri 2837 . . . . . . . 8 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin
65 unfi 9211 . . . . . . . 8 (((𝑜 “ ℕ) ∈ Fin ∧ (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6637, 64, 65sylancl 586 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6729, 66eqeltrid 2845 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin)
68 cnvimass 6100 . . . . . . . . 9 (𝑜 “ ℕ) ⊆ dom 𝑜
6968, 2fssdm 6755 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ⊆ 𝐽)
70 0ss 4400 . . . . . . . . . 10 ∅ ⊆ 𝐽
7162, 70eqsstri 4030 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽
7271a1i 11 . . . . . . . 8 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽)
7369, 72unssd 4192 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ⊆ 𝐽)
7429, 73eqsstrid 4022 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽)
75 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
76 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
77 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
78 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
79 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
80 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
81 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
8275, 76, 77, 10, 78, 79, 80, 34, 81eulerpartlemt0 34371 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ↔ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0m ℕ) ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽))
8325, 67, 74, 82syl3anbrc 1344 . . . . 5 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅))
84 resundir 6012 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽) = ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽))
85 ffn 6736 . . . . . . . 8 (𝑜:𝐽⟶ℕ0𝑜 Fn 𝐽)
86 fnresdm 6687 . . . . . . . . 9 (𝑜 Fn 𝐽 → (𝑜𝐽) = 𝑜)
87 disjdifr 4473 . . . . . . . . . . 11 ((ℕ ∖ 𝐽) ∩ 𝐽) = ∅
88 fnconstg 6796 . . . . . . . . . . . 12 (0 ∈ ℕ0 → ((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽))
89 fnresdisj 6688 . . . . . . . . . . . 12 (((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽) → (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅))
9015, 88, 89mp2b 10 . . . . . . . . . . 11 (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9187, 90mpbi 230 . . . . . . . . . 10 (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅
9291a1i 11 . . . . . . . . 9 (𝑜 Fn 𝐽 → (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9386, 92uneq12d 4169 . . . . . . . 8 (𝑜 Fn 𝐽 → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
942, 85, 933syl 18 . . . . . . 7 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
95 un0 4394 . . . . . . 7 (𝑜 ∪ ∅) = 𝑜
9694, 95eqtrdi 2793 . . . . . 6 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = 𝑜)
9784, 96eqtr2id 2790 . . . . 5 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
98 reseq1 5991 . . . . . 6 (𝑚 = (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) → (𝑚𝐽) = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
9998rspceeqv 3645 . . . . 5 (((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ∧ 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽)) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
10083, 97, 99syl2anc 584 . . . 4 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
101 simpr 484 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 = (𝑚𝐽))
102 simpl 482 . . . . . . . . . . . 12 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (𝑇𝑅))
10375, 76, 77, 10, 78, 79, 80, 34, 81eulerpartlemt0 34371 . . . . . . . . . . . 12 (𝑚 ∈ (𝑇𝑅) ↔ (𝑚 ∈ (ℕ0m ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
104102, 103sylib 218 . . . . . . . . . . 11 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 ∈ (ℕ0m ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
105104simp1d 1143 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (ℕ0m ℕ))
10622, 23elmap 8911 . . . . . . . . . 10 (𝑚 ∈ (ℕ0m ℕ) ↔ 𝑚:ℕ⟶ℕ0)
107105, 106sylib 218 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚:ℕ⟶ℕ0)
108 fssres 6774 . . . . . . . . 9 ((𝑚:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝑚𝐽):𝐽⟶ℕ0)
109107, 12, 108sylancl 586 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽):𝐽⟶ℕ0)
11010, 23rabex2 5341 . . . . . . . . 9 𝐽 ∈ V
11122, 110elmap 8911 . . . . . . . 8 ((𝑚𝐽) ∈ (ℕ0m 𝐽) ↔ (𝑚𝐽):𝐽⟶ℕ0)
112109, 111sylibr 234 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ (ℕ0m 𝐽))
113101, 112eqeltrd 2841 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 ∈ (ℕ0m 𝐽))
114 ffun 6739 . . . . . . . . . 10 (𝑚:ℕ⟶ℕ0 → Fun 𝑚)
115 respreima 7086 . . . . . . . . . 10 (Fun 𝑚 → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
116107, 114, 1153syl 18 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
117104simp2d 1144 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 “ ℕ) ∈ Fin)
118 infi 9302 . . . . . . . . . 10 ((𝑚 “ ℕ) ∈ Fin → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
119117, 118syl 17 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
120116, 119eqeltrd 2841 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) ∈ Fin)
121 vex 3484 . . . . . . . . . 10 𝑚 ∈ V
122121resex 6047 . . . . . . . . 9 (𝑚𝐽) ∈ V
123 cnveq 5884 . . . . . . . . . . 11 (𝑓 = (𝑚𝐽) → 𝑓 = (𝑚𝐽))
124123imaeq1d 6077 . . . . . . . . . 10 (𝑓 = (𝑚𝐽) → (𝑓 “ ℕ) = ((𝑚𝐽) “ ℕ))
125124eleq1d 2826 . . . . . . . . 9 (𝑓 = (𝑚𝐽) → ((𝑓 “ ℕ) ∈ Fin ↔ ((𝑚𝐽) “ ℕ) ∈ Fin))
126122, 125, 34elab2 3682 . . . . . . . 8 ((𝑚𝐽) ∈ 𝑅 ↔ ((𝑚𝐽) “ ℕ) ∈ Fin)
127120, 126sylibr 234 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ 𝑅)
128101, 127eqeltrd 2841 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜𝑅)
129113, 128jca 511 . . . . 5 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅))
130129rexlimiva 3147 . . . 4 (∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽) → (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅))
131100, 130impbii 209 . . 3 ((𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅) ↔ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
132131abbii 2809 . 2 {𝑜 ∣ (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅)} = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
133 df-in 3958 . 2 ((ℕ0m 𝐽) ∩ 𝑅) = {𝑜 ∣ (𝑜 ∈ (ℕ0m 𝐽) ∧ 𝑜𝑅)}
134 eqid 2737 . . 3 (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
135134rnmpt 5968 . 2 ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
136132, 133, 1353eqtr4i 2775 1 ((ℕ0m 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wral 3061  wrex 3070  {crab 3436  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  {copab 5205  cmpt 5225   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433   supp csupp 8185  m cmap 8866  Fincfn 8985  0cc0 11155  1c1 11156   · cmul 11160  cle 11296  cn 12266  2c2 12321  0cn0 12526  cz 12613  cexp 14102  Σcsu 15722  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-dvds 16291
This theorem is referenced by:  eulerpartgbij  34374
  Copyright terms: Public domain W3C validator