![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-in | Structured version Visualization version GIF version |
Description: Example for df-in 3954. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-in | ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4632 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
2 | 1 | ineq2i 4209 | . 2 ⊢ ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8})) |
3 | indi 4274 | . . 3 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) | |
4 | snsspr1 4818 | . . . . . 6 ⊢ {1} ⊆ {1, 3} | |
5 | sseqin2 4215 | . . . . . 6 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1}) | |
6 | 4, 5 | mpbi 229 | . . . . 5 ⊢ ({1, 3} ∩ {1}) = {1} |
7 | 1re 11245 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
8 | 1lt8 12441 | . . . . . . . 8 ⊢ 1 < 8 | |
9 | 7, 8 | gtneii 11357 | . . . . . . 7 ⊢ 8 ≠ 1 |
10 | 3re 12323 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
11 | 3lt8 12439 | . . . . . . . 8 ⊢ 3 < 8 | |
12 | 10, 11 | gtneii 11357 | . . . . . . 7 ⊢ 8 ≠ 3 |
13 | 9, 12 | nelpri 4658 | . . . . . 6 ⊢ ¬ 8 ∈ {1, 3} |
14 | disjsn 4716 | . . . . . 6 ⊢ (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3}) | |
15 | 13, 14 | mpbir 230 | . . . . 5 ⊢ ({1, 3} ∩ {8}) = ∅ |
16 | 6, 15 | uneq12i 4160 | . . . 4 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅) |
17 | un0 4391 | . . . 4 ⊢ ({1} ∪ ∅) = {1} | |
18 | 16, 17 | eqtri 2756 | . . 3 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1} |
19 | 3, 18 | eqtri 2756 | . 2 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = {1} |
20 | 2, 19 | eqtri 2756 | 1 ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4323 {csn 4629 {cpr 4631 1c1 11140 3c3 12299 8c8 12304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |