| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-in | Structured version Visualization version GIF version | ||
| Description: Example for df-in 3907. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-in | ⊢ ({1, 3} ∩ {1, 8}) = {1} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4577 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
| 2 | 1 | ineq2i 4165 | . 2 ⊢ ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8})) |
| 3 | indi 4232 | . . 3 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) | |
| 4 | snsspr1 4764 | . . . . . 6 ⊢ {1} ⊆ {1, 3} | |
| 5 | sseqin2 4171 | . . . . . 6 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1}) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ({1, 3} ∩ {1}) = {1} |
| 7 | 1re 11104 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 8 | 1lt8 12310 | . . . . . . . 8 ⊢ 1 < 8 | |
| 9 | 7, 8 | gtneii 11217 | . . . . . . 7 ⊢ 8 ≠ 1 |
| 10 | 3re 12197 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 11 | 3lt8 12308 | . . . . . . . 8 ⊢ 3 < 8 | |
| 12 | 10, 11 | gtneii 11217 | . . . . . . 7 ⊢ 8 ≠ 3 |
| 13 | 9, 12 | nelpri 4606 | . . . . . 6 ⊢ ¬ 8 ∈ {1, 3} |
| 14 | disjsn 4662 | . . . . . 6 ⊢ (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3}) | |
| 15 | 13, 14 | mpbir 231 | . . . . 5 ⊢ ({1, 3} ∩ {8}) = ∅ |
| 16 | 6, 15 | uneq12i 4114 | . . . 4 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅) |
| 17 | un0 4342 | . . . 4 ⊢ ({1} ∪ ∅) = {1} | |
| 18 | 16, 17 | eqtri 2753 | . . 3 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1} |
| 19 | 3, 18 | eqtri 2753 | . 2 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = {1} |
| 20 | 2, 19 | eqtri 2753 | 1 ⊢ ({1, 3} ∩ {1, 8}) = {1} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2110 ∪ cun 3898 ∩ cin 3899 ⊆ wss 3900 ∅c0 4281 {csn 4574 {cpr 4576 1c1 10999 3c3 12173 8c8 12178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |