MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-in Structured version   Visualization version   GIF version

Theorem ex-in 30411
Description: Example for df-in 3938. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-in ({1, 3} ∩ {1, 8}) = {1}

Proof of Theorem ex-in
StepHypRef Expression
1 df-pr 4609 . . 3 {1, 8} = ({1} ∪ {8})
21ineq2i 4197 . 2 ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8}))
3 indi 4264 . . 3 ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8}))
4 snsspr1 4795 . . . . . 6 {1} ⊆ {1, 3}
5 sseqin2 4203 . . . . . 6 ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1})
64, 5mpbi 230 . . . . 5 ({1, 3} ∩ {1}) = {1}
7 1re 11240 . . . . . . . 8 1 ∈ ℝ
8 1lt8 12443 . . . . . . . 8 1 < 8
97, 8gtneii 11352 . . . . . . 7 8 ≠ 1
10 3re 12325 . . . . . . . 8 3 ∈ ℝ
11 3lt8 12441 . . . . . . . 8 3 < 8
1210, 11gtneii 11352 . . . . . . 7 8 ≠ 3
139, 12nelpri 4636 . . . . . 6 ¬ 8 ∈ {1, 3}
14 disjsn 4692 . . . . . 6 (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3})
1513, 14mpbir 231 . . . . 5 ({1, 3} ∩ {8}) = ∅
166, 15uneq12i 4146 . . . 4 (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅)
17 un0 4374 . . . 4 ({1} ∪ ∅) = {1}
1816, 17eqtri 2759 . . 3 (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1}
193, 18eqtri 2759 . 2 ({1, 3} ∩ ({1} ∪ {8})) = {1}
202, 19eqtri 2759 1 ({1, 3} ∩ {1, 8}) = {1}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606  {cpr 4608  1c1 11135  3c3 12301  8c8 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator