| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-in | Structured version Visualization version GIF version | ||
| Description: Example for df-in 3912. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-in | ⊢ ({1, 3} ∩ {1, 8}) = {1} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4582 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
| 2 | 1 | ineq2i 4170 | . 2 ⊢ ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8})) |
| 3 | indi 4237 | . . 3 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) | |
| 4 | snsspr1 4768 | . . . . . 6 ⊢ {1} ⊆ {1, 3} | |
| 5 | sseqin2 4176 | . . . . . 6 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1}) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ({1, 3} ∩ {1}) = {1} |
| 7 | 1re 11134 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 8 | 1lt8 12339 | . . . . . . . 8 ⊢ 1 < 8 | |
| 9 | 7, 8 | gtneii 11246 | . . . . . . 7 ⊢ 8 ≠ 1 |
| 10 | 3re 12226 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 11 | 3lt8 12337 | . . . . . . . 8 ⊢ 3 < 8 | |
| 12 | 10, 11 | gtneii 11246 | . . . . . . 7 ⊢ 8 ≠ 3 |
| 13 | 9, 12 | nelpri 4609 | . . . . . 6 ⊢ ¬ 8 ∈ {1, 3} |
| 14 | disjsn 4665 | . . . . . 6 ⊢ (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3}) | |
| 15 | 13, 14 | mpbir 231 | . . . . 5 ⊢ ({1, 3} ∩ {8}) = ∅ |
| 16 | 6, 15 | uneq12i 4119 | . . . 4 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅) |
| 17 | un0 4347 | . . . 4 ⊢ ({1} ∪ ∅) = {1} | |
| 18 | 16, 17 | eqtri 2752 | . . 3 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1} |
| 19 | 3, 18 | eqtri 2752 | . 2 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = {1} |
| 20 | 2, 19 | eqtri 2752 | 1 ⊢ ({1, 3} ∩ {1, 8}) = {1} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {csn 4579 {cpr 4581 1c1 11029 3c3 12202 8c8 12207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |