![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-in | Structured version Visualization version GIF version |
Description: Example for df-in 3970. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-in | ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4634 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
2 | 1 | ineq2i 4225 | . 2 ⊢ ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8})) |
3 | indi 4290 | . . 3 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) | |
4 | snsspr1 4819 | . . . . . 6 ⊢ {1} ⊆ {1, 3} | |
5 | sseqin2 4231 | . . . . . 6 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1}) | |
6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ({1, 3} ∩ {1}) = {1} |
7 | 1re 11259 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
8 | 1lt8 12462 | . . . . . . . 8 ⊢ 1 < 8 | |
9 | 7, 8 | gtneii 11371 | . . . . . . 7 ⊢ 8 ≠ 1 |
10 | 3re 12344 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
11 | 3lt8 12460 | . . . . . . . 8 ⊢ 3 < 8 | |
12 | 10, 11 | gtneii 11371 | . . . . . . 7 ⊢ 8 ≠ 3 |
13 | 9, 12 | nelpri 4660 | . . . . . 6 ⊢ ¬ 8 ∈ {1, 3} |
14 | disjsn 4716 | . . . . . 6 ⊢ (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3}) | |
15 | 13, 14 | mpbir 231 | . . . . 5 ⊢ ({1, 3} ∩ {8}) = ∅ |
16 | 6, 15 | uneq12i 4176 | . . . 4 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅) |
17 | un0 4400 | . . . 4 ⊢ ({1} ∪ ∅) = {1} | |
18 | 16, 17 | eqtri 2763 | . . 3 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1} |
19 | 3, 18 | eqtri 2763 | . 2 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = {1} |
20 | 2, 19 | eqtri 2763 | 1 ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 {csn 4631 {cpr 4633 1c1 11154 3c3 12320 8c8 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |