![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-in | Structured version Visualization version GIF version |
Description: Example for df-in 3954. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-in | ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4636 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
2 | 1 | ineq2i 4210 | . 2 ⊢ ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8})) |
3 | indi 4275 | . . 3 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) | |
4 | snsspr1 4823 | . . . . . 6 ⊢ {1} ⊆ {1, 3} | |
5 | sseqin2 4216 | . . . . . 6 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1}) | |
6 | 4, 5 | mpbi 229 | . . . . 5 ⊢ ({1, 3} ∩ {1}) = {1} |
7 | 1re 11264 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
8 | 1lt8 12462 | . . . . . . . 8 ⊢ 1 < 8 | |
9 | 7, 8 | gtneii 11376 | . . . . . . 7 ⊢ 8 ≠ 1 |
10 | 3re 12344 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
11 | 3lt8 12460 | . . . . . . . 8 ⊢ 3 < 8 | |
12 | 10, 11 | gtneii 11376 | . . . . . . 7 ⊢ 8 ≠ 3 |
13 | 9, 12 | nelpri 4662 | . . . . . 6 ⊢ ¬ 8 ∈ {1, 3} |
14 | disjsn 4720 | . . . . . 6 ⊢ (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3}) | |
15 | 13, 14 | mpbir 230 | . . . . 5 ⊢ ({1, 3} ∩ {8}) = ∅ |
16 | 6, 15 | uneq12i 4161 | . . . 4 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅) |
17 | un0 4395 | . . . 4 ⊢ ({1} ∪ ∅) = {1} | |
18 | 16, 17 | eqtri 2754 | . . 3 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1} |
19 | 3, 18 | eqtri 2754 | . 2 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = {1} |
20 | 2, 19 | eqtri 2754 | 1 ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4325 {csn 4633 {cpr 4635 1c1 11159 3c3 12320 8c8 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |