MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-in Structured version   Visualization version   GIF version

Theorem ex-in 28119
Description: Example for df-in 3946. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-in ({1, 3} ∩ {1, 8}) = {1}

Proof of Theorem ex-in
StepHypRef Expression
1 df-pr 4566 . . 3 {1, 8} = ({1} ∪ {8})
21ineq2i 4189 . 2 ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8}))
3 indi 4253 . . 3 ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8}))
4 snsspr1 4745 . . . . . 6 {1} ⊆ {1, 3}
5 sseqin2 4195 . . . . . 6 ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1})
64, 5mpbi 231 . . . . 5 ({1, 3} ∩ {1}) = {1}
7 1re 10633 . . . . . . . 8 1 ∈ ℝ
8 1lt8 11827 . . . . . . . 8 1 < 8
97, 8gtneii 10744 . . . . . . 7 8 ≠ 1
10 3re 11709 . . . . . . . 8 3 ∈ ℝ
11 3lt8 11825 . . . . . . . 8 3 < 8
1210, 11gtneii 10744 . . . . . . 7 8 ≠ 3
139, 12nelpri 4590 . . . . . 6 ¬ 8 ∈ {1, 3}
14 disjsn 4645 . . . . . 6 (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3})
1513, 14mpbir 232 . . . . 5 ({1, 3} ∩ {8}) = ∅
166, 15uneq12i 4140 . . . 4 (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅)
17 un0 4347 . . . 4 ({1} ∪ ∅) = {1}
1816, 17eqtri 2848 . . 3 (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1}
193, 18eqtri 2848 . 2 ({1, 3} ∩ ({1} ∪ {8})) = {1}
202, 19eqtri 2848 1 ({1, 3} ∩ {1, 8}) = {1}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1530  wcel 2106  cun 3937  cin 3938  wss 3939  c0 4294  {csn 4563  {cpr 4565  1c1 10530  3c3 11685  8c8 11690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator