![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-in | Structured version Visualization version GIF version |
Description: Example for df-in 3954. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-in | ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4630 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
2 | 1 | ineq2i 4208 | . 2 ⊢ ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8})) |
3 | indi 4272 | . . 3 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) | |
4 | snsspr1 4816 | . . . . . 6 ⊢ {1} ⊆ {1, 3} | |
5 | sseqin2 4214 | . . . . . 6 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1}) | |
6 | 4, 5 | mpbi 229 | . . . . 5 ⊢ ({1, 3} ∩ {1}) = {1} |
7 | 1re 11210 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
8 | 1lt8 12406 | . . . . . . . 8 ⊢ 1 < 8 | |
9 | 7, 8 | gtneii 11322 | . . . . . . 7 ⊢ 8 ≠ 1 |
10 | 3re 12288 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
11 | 3lt8 12404 | . . . . . . . 8 ⊢ 3 < 8 | |
12 | 10, 11 | gtneii 11322 | . . . . . . 7 ⊢ 8 ≠ 3 |
13 | 9, 12 | nelpri 4656 | . . . . . 6 ⊢ ¬ 8 ∈ {1, 3} |
14 | disjsn 4714 | . . . . . 6 ⊢ (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3}) | |
15 | 13, 14 | mpbir 230 | . . . . 5 ⊢ ({1, 3} ∩ {8}) = ∅ |
16 | 6, 15 | uneq12i 4160 | . . . 4 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅) |
17 | un0 4389 | . . . 4 ⊢ ({1} ∪ ∅) = {1} | |
18 | 16, 17 | eqtri 2760 | . . 3 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1} |
19 | 3, 18 | eqtri 2760 | . 2 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = {1} |
20 | 2, 19 | eqtri 2760 | 1 ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 {csn 4627 {cpr 4629 1c1 11107 3c3 12264 8c8 12269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |