Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-in | Structured version Visualization version GIF version |
Description: Example for df-in 3865. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-in | ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4525 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
2 | 1 | ineq2i 4114 | . 2 ⊢ ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8})) |
3 | indi 4178 | . . 3 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) | |
4 | snsspr1 4704 | . . . . . 6 ⊢ {1} ⊆ {1, 3} | |
5 | sseqin2 4120 | . . . . . 6 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1}) | |
6 | 4, 5 | mpbi 233 | . . . . 5 ⊢ ({1, 3} ∩ {1}) = {1} |
7 | 1re 10679 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
8 | 1lt8 11872 | . . . . . . . 8 ⊢ 1 < 8 | |
9 | 7, 8 | gtneii 10790 | . . . . . . 7 ⊢ 8 ≠ 1 |
10 | 3re 11754 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
11 | 3lt8 11870 | . . . . . . . 8 ⊢ 3 < 8 | |
12 | 10, 11 | gtneii 10790 | . . . . . . 7 ⊢ 8 ≠ 3 |
13 | 9, 12 | nelpri 4551 | . . . . . 6 ⊢ ¬ 8 ∈ {1, 3} |
14 | disjsn 4604 | . . . . . 6 ⊢ (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3}) | |
15 | 13, 14 | mpbir 234 | . . . . 5 ⊢ ({1, 3} ∩ {8}) = ∅ |
16 | 6, 15 | uneq12i 4066 | . . . 4 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅) |
17 | un0 4286 | . . . 4 ⊢ ({1} ∪ ∅) = {1} | |
18 | 16, 17 | eqtri 2781 | . . 3 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1} |
19 | 3, 18 | eqtri 2781 | . 2 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = {1} |
20 | 2, 19 | eqtri 2781 | 1 ⊢ ({1, 3} ∩ {1, 8}) = {1} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2111 ∪ cun 3856 ∩ cin 3857 ⊆ wss 3858 ∅c0 4225 {csn 4522 {cpr 4524 1c1 10576 3c3 11730 8c8 11735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |