| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-in | Structured version Visualization version GIF version | ||
| Description: Example for df-in 3923. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-in | ⊢ ({1, 3} ∩ {1, 8}) = {1} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4594 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
| 2 | 1 | ineq2i 4182 | . 2 ⊢ ({1, 3} ∩ {1, 8}) = ({1, 3} ∩ ({1} ∪ {8})) |
| 3 | indi 4249 | . . 3 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) | |
| 4 | snsspr1 4780 | . . . . . 6 ⊢ {1} ⊆ {1, 3} | |
| 5 | sseqin2 4188 | . . . . . 6 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∩ {1}) = {1}) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ({1, 3} ∩ {1}) = {1} |
| 7 | 1re 11180 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 8 | 1lt8 12385 | . . . . . . . 8 ⊢ 1 < 8 | |
| 9 | 7, 8 | gtneii 11292 | . . . . . . 7 ⊢ 8 ≠ 1 |
| 10 | 3re 12267 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 11 | 3lt8 12383 | . . . . . . . 8 ⊢ 3 < 8 | |
| 12 | 10, 11 | gtneii 11292 | . . . . . . 7 ⊢ 8 ≠ 3 |
| 13 | 9, 12 | nelpri 4621 | . . . . . 6 ⊢ ¬ 8 ∈ {1, 3} |
| 14 | disjsn 4677 | . . . . . 6 ⊢ (({1, 3} ∩ {8}) = ∅ ↔ ¬ 8 ∈ {1, 3}) | |
| 15 | 13, 14 | mpbir 231 | . . . . 5 ⊢ ({1, 3} ∩ {8}) = ∅ |
| 16 | 6, 15 | uneq12i 4131 | . . . 4 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = ({1} ∪ ∅) |
| 17 | un0 4359 | . . . 4 ⊢ ({1} ∪ ∅) = {1} | |
| 18 | 16, 17 | eqtri 2753 | . . 3 ⊢ (({1, 3} ∩ {1}) ∪ ({1, 3} ∩ {8})) = {1} |
| 19 | 3, 18 | eqtri 2753 | . 2 ⊢ ({1, 3} ∩ ({1} ∪ {8})) = {1} |
| 20 | 2, 19 | eqtri 2753 | 1 ⊢ ({1, 3} ∩ {1, 8}) = {1} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∪ cun 3914 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 {csn 4591 {cpr 4593 1c1 11075 3c3 12243 8c8 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |