MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin3 Structured version   Visualization version   GIF version

Theorem dfin3 4296
Description: Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
dfin3 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))

Proof of Theorem dfin3
StepHypRef Expression
1 ddif 4164 . 2 (V ∖ (V ∖ (𝐴 ∖ (V ∖ 𝐵)))) = (𝐴 ∖ (V ∖ 𝐵))
2 dfun2 4289 . . . 4 ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) = (V ∖ ((V ∖ (V ∖ 𝐴)) ∖ (V ∖ 𝐵)))
3 ddif 4164 . . . . . 6 (V ∖ (V ∖ 𝐴)) = 𝐴
43difeq1i 4145 . . . . 5 ((V ∖ (V ∖ 𝐴)) ∖ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ 𝐵))
54difeq2i 4146 . . . 4 (V ∖ ((V ∖ (V ∖ 𝐴)) ∖ (V ∖ 𝐵))) = (V ∖ (𝐴 ∖ (V ∖ 𝐵)))
62, 5eqtri 2768 . . 3 ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) = (V ∖ (𝐴 ∖ (V ∖ 𝐵)))
76difeq2i 4146 . 2 (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) = (V ∖ (V ∖ (𝐴 ∖ (V ∖ 𝐵))))
8 dfin2 4290 . 2 (𝐴𝐵) = (𝐴 ∖ (V ∖ 𝐵))
91, 7, 83eqtr4ri 2779 1 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  cdif 3973  cun 3974  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983
This theorem is referenced by:  difindi  4311
  Copyright terms: Public domain W3C validator