![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfin3 | Structured version Visualization version GIF version |
Description: Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
dfin3 | ⊢ (𝐴 ∩ 𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ddif 4164 | . 2 ⊢ (V ∖ (V ∖ (𝐴 ∖ (V ∖ 𝐵)))) = (𝐴 ∖ (V ∖ 𝐵)) | |
2 | dfun2 4289 | . . . 4 ⊢ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) = (V ∖ ((V ∖ (V ∖ 𝐴)) ∖ (V ∖ 𝐵))) | |
3 | ddif 4164 | . . . . . 6 ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 | |
4 | 3 | difeq1i 4145 | . . . . 5 ⊢ ((V ∖ (V ∖ 𝐴)) ∖ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ 𝐵)) |
5 | 4 | difeq2i 4146 | . . . 4 ⊢ (V ∖ ((V ∖ (V ∖ 𝐴)) ∖ (V ∖ 𝐵))) = (V ∖ (𝐴 ∖ (V ∖ 𝐵))) |
6 | 2, 5 | eqtri 2768 | . . 3 ⊢ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) = (V ∖ (𝐴 ∖ (V ∖ 𝐵))) |
7 | 6 | difeq2i 4146 | . 2 ⊢ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) = (V ∖ (V ∖ (𝐴 ∖ (V ∖ 𝐵)))) |
8 | dfin2 4290 | . 2 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) | |
9 | 1, 7, 8 | 3eqtr4ri 2779 | 1 ⊢ (𝐴 ∩ 𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 |
This theorem is referenced by: difindi 4311 |
Copyright terms: Public domain | W3C validator |