Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinico Structured version   Visualization version   GIF version

Theorem iocinico 42877
Description: The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.)
Assertion
Ref Expression
iocinico (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})

Proof of Theorem iocinico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-in 3954 . . . . . 6 ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))}
2 elioc1 13420 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
323adant3 1129 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
4 3simpb 1146 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵) → (𝑥 ∈ ℝ*𝑥𝐵))
53, 4biimtrdi 252 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) → (𝑥 ∈ ℝ*𝑥𝐵)))
6 elico1 13421 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
763adant1 1127 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
8 3simpa 1145 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶) → (𝑥 ∈ ℝ*𝐵𝑥))
97, 8biimtrdi 252 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) → (𝑥 ∈ ℝ*𝐵𝑥)))
105, 9anim12d 607 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → ((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥))))
11 simpll 765 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥 ∈ ℝ*)
12 simprr 771 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝐵𝑥)
13 simplr 767 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥𝐵)
1411, 12, 133jca 1125 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵))
1510, 14syl6 35 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
16 elicc1 13422 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1716anidms 565 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
18173ad2ant2 1131 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1915, 18sylibrd 258 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (𝐵[,]𝐵)))
2019ss2abdv 4060 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))} ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
211, 20eqsstrid 4028 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
22 abid2 2864 . . . . 5 {𝑥𝑥 ∈ (𝐵[,]𝐵)} = (𝐵[,]𝐵)
2321, 22sseqtrdi 4030 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
2423adantr 479 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
25 iccid 13423 . . . . 5 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
26253ad2ant2 1131 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵[,]𝐵) = {𝐵})
2726adantr 479 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵[,]𝐵) = {𝐵})
2824, 27sseqtrd 4020 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝐵})
29 simpl2 1189 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
30 simprl 769 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐴 < 𝐵)
3129xrleidd 13185 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
32 elioc1 13420 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
33323adant3 1129 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3433adantr 479 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3529, 30, 31, 34mpbir3and 1339 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐴(,]𝐵))
36 simprr 771 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
37 elico1 13421 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
38373adant1 1127 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
3938adantr 479 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
4029, 31, 36, 39mpbir3and 1339 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐵[,)𝐶))
4135, 40elind 4195 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4241snssd 4818 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4328, 42eqssd 3997 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  {cab 2703  cin 3946  wss 3947  {csn 4633   class class class wbr 5153  (class class class)co 7424  *cxr 11297   < clt 11298  cle 11299  (,]cioc 13379  [,)cico 13380  [,]cicc 13381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-pre-lttri 11232  ax-pre-lttrn 11233
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-ioc 13383  df-ico 13384  df-icc 13385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator