Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinico Structured version   Visualization version   GIF version

Theorem iocinico 39324
Description: The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.)
Assertion
Ref Expression
iocinico (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})

Proof of Theorem iocinico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-in 3872 . . . . . 6 ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))}
2 elioc1 12634 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
323adant3 1125 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
4 3simpb 1142 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵) → (𝑥 ∈ ℝ*𝑥𝐵))
53, 4syl6bi 254 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) → (𝑥 ∈ ℝ*𝑥𝐵)))
6 elico1 12635 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
763adant1 1123 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
8 3simpa 1141 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶) → (𝑥 ∈ ℝ*𝐵𝑥))
97, 8syl6bi 254 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) → (𝑥 ∈ ℝ*𝐵𝑥)))
105, 9anim12d 608 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → ((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥))))
11 simpll 763 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥 ∈ ℝ*)
12 simprr 769 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝐵𝑥)
13 simplr 765 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥𝐵)
1411, 12, 133jca 1121 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵))
1510, 14syl6 35 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
16 elicc1 12636 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1716anidms 567 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
18173ad2ant2 1127 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1915, 18sylibrd 260 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (𝐵[,]𝐵)))
2019ss2abdv 3971 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))} ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
211, 20eqsstrid 3942 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
22 abid2 2928 . . . . 5 {𝑥𝑥 ∈ (𝐵[,]𝐵)} = (𝐵[,]𝐵)
2321, 22syl6sseq 3944 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
2423adantr 481 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
25 iccid 12637 . . . . 5 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
26253ad2ant2 1127 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵[,]𝐵) = {𝐵})
2726adantr 481 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵[,]𝐵) = {𝐵})
2824, 27sseqtrd 3934 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝐵})
29 simpl2 1185 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
30 simprl 767 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐴 < 𝐵)
3129xrleidd 12399 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
32 elioc1 12634 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
33323adant3 1125 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3433adantr 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3529, 30, 31, 34mpbir3and 1335 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐴(,]𝐵))
36 simprr 769 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
37 elico1 12635 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
38373adant1 1123 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
3938adantr 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
4029, 31, 36, 39mpbir3and 1335 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐵[,)𝐶))
4135, 40elind 4098 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4241snssd 4655 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4328, 42eqssd 3912 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  {cab 2777  cin 3864  wss 3865  {csn 4478   class class class wbr 4968  (class class class)co 7023  *cxr 10527   < clt 10528  cle 10529  (,]cioc 12593  [,)cico 12594  [,]cicc 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-pre-lttri 10464  ax-pre-lttrn 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-ioc 12597  df-ico 12598  df-icc 12599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator