Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinico Structured version   Visualization version   GIF version

Theorem iocinico 41951
Description: The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.)
Assertion
Ref Expression
iocinico (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})

Proof of Theorem iocinico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-in 3955 . . . . . 6 ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))}
2 elioc1 13365 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
323adant3 1132 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
4 3simpb 1149 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵) → (𝑥 ∈ ℝ*𝑥𝐵))
53, 4syl6bi 252 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) → (𝑥 ∈ ℝ*𝑥𝐵)))
6 elico1 13366 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
763adant1 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
8 3simpa 1148 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶) → (𝑥 ∈ ℝ*𝐵𝑥))
97, 8syl6bi 252 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) → (𝑥 ∈ ℝ*𝐵𝑥)))
105, 9anim12d 609 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → ((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥))))
11 simpll 765 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥 ∈ ℝ*)
12 simprr 771 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝐵𝑥)
13 simplr 767 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥𝐵)
1411, 12, 133jca 1128 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵))
1510, 14syl6 35 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
16 elicc1 13367 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1716anidms 567 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
18173ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1915, 18sylibrd 258 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (𝐵[,]𝐵)))
2019ss2abdv 4060 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))} ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
211, 20eqsstrid 4030 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
22 abid2 2871 . . . . 5 {𝑥𝑥 ∈ (𝐵[,]𝐵)} = (𝐵[,]𝐵)
2321, 22sseqtrdi 4032 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
2423adantr 481 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
25 iccid 13368 . . . . 5 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
26253ad2ant2 1134 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵[,]𝐵) = {𝐵})
2726adantr 481 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵[,]𝐵) = {𝐵})
2824, 27sseqtrd 4022 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝐵})
29 simpl2 1192 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
30 simprl 769 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐴 < 𝐵)
3129xrleidd 13130 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
32 elioc1 13365 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
33323adant3 1132 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3433adantr 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3529, 30, 31, 34mpbir3and 1342 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐴(,]𝐵))
36 simprr 771 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
37 elico1 13366 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
38373adant1 1130 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
3938adantr 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
4029, 31, 36, 39mpbir3and 1342 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐵[,)𝐶))
4135, 40elind 4194 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4241snssd 4812 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4328, 42eqssd 3999 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2709  cin 3947  wss 3948  {csn 4628   class class class wbr 5148  (class class class)co 7408  *cxr 11246   < clt 11247  cle 11248  (,]cioc 13324  [,)cico 13325  [,]cicc 13326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-ioc 13328  df-ico 13329  df-icc 13330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator