Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinico Structured version   Visualization version   GIF version

Theorem iocinico 43319
Description: The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.)
Assertion
Ref Expression
iocinico (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})

Proof of Theorem iocinico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-in 3906 . . . . . 6 ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))}
2 elioc1 13297 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
323adant3 1132 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
4 3simpb 1149 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵) → (𝑥 ∈ ℝ*𝑥𝐵))
53, 4biimtrdi 253 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) → (𝑥 ∈ ℝ*𝑥𝐵)))
6 elico1 13298 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
763adant1 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
8 3simpa 1148 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶) → (𝑥 ∈ ℝ*𝐵𝑥))
97, 8biimtrdi 253 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) → (𝑥 ∈ ℝ*𝐵𝑥)))
105, 9anim12d 609 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → ((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥))))
11 simpll 766 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥 ∈ ℝ*)
12 simprr 772 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝐵𝑥)
13 simplr 768 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥𝐵)
1411, 12, 133jca 1128 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵))
1510, 14syl6 35 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
16 elicc1 13299 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1716anidms 566 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
18173ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1915, 18sylibrd 259 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (𝐵[,]𝐵)))
2019ss2abdv 4015 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))} ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
211, 20eqsstrid 3970 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
22 abid2 2870 . . . . 5 {𝑥𝑥 ∈ (𝐵[,]𝐵)} = (𝐵[,]𝐵)
2321, 22sseqtrdi 3972 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
2423adantr 480 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
25 iccid 13300 . . . . 5 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
26253ad2ant2 1134 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵[,]𝐵) = {𝐵})
2726adantr 480 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵[,]𝐵) = {𝐵})
2824, 27sseqtrd 3968 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝐵})
29 simpl2 1193 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
30 simprl 770 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐴 < 𝐵)
3129xrleidd 13061 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
32 elioc1 13297 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
33323adant3 1132 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3433adantr 480 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3529, 30, 31, 34mpbir3and 1343 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐴(,]𝐵))
36 simprr 772 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
37 elico1 13298 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
38373adant1 1130 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
3938adantr 480 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
4029, 31, 36, 39mpbir3and 1343 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐵[,)𝐶))
4135, 40elind 4151 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4241snssd 4762 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4328, 42eqssd 3949 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  cin 3898  wss 3899  {csn 4577   class class class wbr 5095  (class class class)co 7355  *cxr 11155   < clt 11156  cle 11157  (,]cioc 13256  [,)cico 13257  [,]cicc 13258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-pre-lttri 11090  ax-pre-lttrn 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-ioc 13260  df-ico 13261  df-icc 13262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator