![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaval | Structured version Visualization version GIF version |
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2130, ax-11 2147, ax-12 2164. (Revised by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
iotaval | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2795 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
2 | df-sn 4625 | . . 3 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | eqtr4di 2785 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
4 | iotaval2 6510 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
5 | 3, 4 | syl 17 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 = wceq 1534 {cab 2704 {csn 4624 ℩cio 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-un 3949 df-in 3951 df-ss 3961 df-sn 4625 df-pr 4627 df-uni 4904 df-iota 6494 |
This theorem is referenced by: iotauni 6517 iota1 6519 iotaexOLD 6522 iota4 6523 iota5 6525 iota5f 35254 iotain 43777 iotaexeu 43778 iotasbc 43779 iotaequ 43789 iotavalb 43790 pm14.24 43792 sbiota1 43794 aiotaval 46398 |
Copyright terms: Public domain | W3C validator |