MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaval Structured version   Visualization version   GIF version

Theorem iotaval 6518
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2129, ax-11 2146, ax-12 2166. (Revised by SN, 23-Nov-2024.)
Assertion
Ref Expression
iotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotaval
StepHypRef Expression
1 abbi 2793 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
2 df-sn 4630 . . 3 {𝑦} = {𝑥𝑥 = 𝑦}
31, 2eqtr4di 2783 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
4 iotaval2 6515 . 2 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
53, 4syl 17 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531   = wceq 1533  {cab 2702  {csn 4629  cio 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-un 3950  df-ss 3962  df-sn 4630  df-pr 4632  df-uni 4909  df-iota 6499
This theorem is referenced by:  iotauni  6522  iota1  6524  iotaexOLD  6527  iota4  6528  iota5  6530  iota5f  35388  iotain  43919  iotaexeu  43920  iotasbc  43921  iotaequ  43931  iotavalb  43932  pm14.24  43934  sbiota1  43936  aiotaval  46538
  Copyright terms: Public domain W3C validator