![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaval | Structured version Visualization version GIF version |
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2139, ax-11 2155, ax-12 2175. (Revised by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
iotaval | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2805 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
2 | df-sn 4632 | . . 3 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | eqtr4di 2793 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
4 | iotaval2 6531 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
5 | 3, 4 | syl 17 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 {cab 2712 {csn 4631 ℩cio 6514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 |
This theorem is referenced by: iotauni 6538 iota1 6540 iotaexOLD 6543 iota4 6544 iota5 6546 iota5f 35704 iotain 44413 iotaexeu 44414 iotasbc 44415 iotaequ 44425 iotavalb 44426 pm14.24 44428 sbiota1 44430 aiotaval 47045 |
Copyright terms: Public domain | W3C validator |