| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaval | Structured version Visualization version GIF version | ||
| Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotaval | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2800 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
| 2 | df-sn 4602 | . . 3 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
| 3 | 1, 2 | eqtr4di 2788 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
| 4 | iotaval2 6499 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 {cab 2713 {csn 4601 ℩cio 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6484 |
| This theorem is referenced by: iotauni 6506 iota1 6508 iotaexOLD 6511 iota4 6512 iota5 6514 iota5f 35741 iotain 44441 iotaexeu 44442 iotasbc 44443 iotaequ 44453 iotavalb 44454 pm14.24 44456 sbiota1 44458 aiotaval 47124 |
| Copyright terms: Public domain | W3C validator |