MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaval Structured version   Visualization version   GIF version

Theorem iotaval 6075
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 6065 . 2 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
2 vex 3394 . . . . . . . 8 𝑦 ∈ V
3 sbeqalb 3686 . . . . . . . 8 (𝑦 ∈ V → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑦 = 𝑧))
42, 3ax-mp 5 . . . . . . 7 ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑦 = 𝑧)
54ex 399 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) → 𝑦 = 𝑧))
6 equequ2 2122 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
76bibi2d 333 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝑧)))
87biimpd 220 . . . . . . . 8 (𝑦 = 𝑧 → ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑧)))
98alimdv 2007 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑧)))
109com12 32 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (𝑦 = 𝑧 → ∀𝑥(𝜑𝑥 = 𝑧)))
115, 10impbid 203 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑦 = 𝑧))
12 equcom 2114 . . . . 5 (𝑦 = 𝑧𝑧 = 𝑦)
1311, 12syl6bb 278 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
1413alrimiv 2018 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
15 uniabio 6074 . . 3 (∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
1614, 15syl 17 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
171, 16syl5eq 2852 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1635   = wceq 1637  wcel 2156  {cab 2792  Vcvv 3391   cuni 4630  cio 6062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-rex 3102  df-v 3393  df-sbc 3634  df-un 3774  df-sn 4371  df-pr 4373  df-uni 4631  df-iota 6064
This theorem is referenced by:  iotauni  6076  iota1  6078  iotaex  6081  iota4  6082  iota5  6084  iota5f  31928  iotain  39117  iotaexeu  39118  iotasbc  39119  iotaequ  39129  iotavalb  39130  pm14.24  39132  sbiota1  39134  aiotaval  41677
  Copyright terms: Public domain W3C validator