MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaval Structured version   Visualization version   GIF version

Theorem iotaval 6331
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 6317 . 2 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
2 sbeqalb 3838 . . . . . . . 8 (𝑦 ∈ V → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑦 = 𝑧))
32elv 3501 . . . . . . 7 ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑦 = 𝑧)
43ex 415 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) → 𝑦 = 𝑧))
5 equequ2 2033 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
65bibi2d 345 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝑧)))
76biimpd 231 . . . . . . . 8 (𝑦 = 𝑧 → ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑧)))
87alimdv 1917 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑧)))
98com12 32 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (𝑦 = 𝑧 → ∀𝑥(𝜑𝑥 = 𝑧)))
104, 9impbid 214 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑦 = 𝑧))
11 equcom 2025 . . . . 5 (𝑦 = 𝑧𝑧 = 𝑦)
1210, 11syl6bb 289 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
1312alrimiv 1928 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
14 uniabio 6330 . . 3 (∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
1513, 14syl 17 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
161, 15syl5eq 2870 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  {cab 2801  Vcvv 3496   cuni 4840  cio 6314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-v 3498  df-sbc 3775  df-un 3943  df-in 3945  df-ss 3954  df-sn 4570  df-pr 4572  df-uni 4841  df-iota 6316
This theorem is referenced by:  iotauni  6332  iota1  6334  iotaex  6337  iota4  6338  iota5  6340  iota5f  32957  iotain  40756  iotaexeu  40757  iotasbc  40758  iotaequ  40768  iotavalb  40769  pm14.24  40771  sbiota1  40773  aiotaval  43300
  Copyright terms: Public domain W3C validator