| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaval | Structured version Visualization version GIF version | ||
| Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) Remove dependency on ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotaval | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2796 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
| 2 | df-sn 4577 | . . 3 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
| 3 | 1, 2 | eqtr4di 2784 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
| 4 | iotaval2 6452 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 {cab 2709 {csn 4576 ℩cio 6435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 df-uni 4860 df-iota 6437 |
| This theorem is referenced by: iotauni 6458 iota1 6460 iota4 6462 iota5 6464 iota5f 35756 iotain 44449 iotaexeu 44450 iotasbc 44451 iotaequ 44461 iotavalb 44462 pm14.24 44464 sbiota1 44466 aiotaval 47125 |
| Copyright terms: Public domain | W3C validator |