MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaval Structured version   Visualization version   GIF version

Theorem iotaval 6326
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 6312 . 2 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
2 sbeqalb 3839 . . . . . . . 8 (𝑦 ∈ V → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑦 = 𝑧))
32elv 3504 . . . . . . 7 ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜑𝑥 = 𝑧)) → 𝑦 = 𝑧)
43ex 413 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) → 𝑦 = 𝑧))
5 equequ2 2026 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
65bibi2d 344 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝑧)))
76biimpd 230 . . . . . . . 8 (𝑦 = 𝑧 → ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑧)))
87alimdv 1910 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑧)))
98com12 32 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (𝑦 = 𝑧 → ∀𝑥(𝜑𝑥 = 𝑧)))
104, 9impbid 213 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑦 = 𝑧))
11 equcom 2018 . . . . 5 (𝑦 = 𝑧𝑧 = 𝑦)
1210, 11syl6bb 288 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
1312alrimiv 1921 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦))
14 uniabio 6325 . . 3 (∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
1513, 14syl 17 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = 𝑦)
161, 15syl5eq 2872 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1528   = wceq 1530  {cab 2803  Vcvv 3499   cuni 4836  cio 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-rex 3148  df-v 3501  df-sbc 3776  df-un 3944  df-sn 4564  df-pr 4566  df-uni 4837  df-iota 6311
This theorem is referenced by:  iotauni  6327  iota1  6329  iotaex  6332  iota4  6333  iota5  6335  iota5f  32839  iotain  40610  iotaexeu  40611  iotasbc  40612  iotaequ  40622  iotavalb  40623  pm14.24  40625  sbiota1  40627  aiotaval  43155
  Copyright terms: Public domain W3C validator