MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv4 Structured version   Visualization version   GIF version

Theorem dffv4 6753
Description: The previous definition of function value, from before the operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 5989), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dffv4 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffv4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffv3 6752 . 2 (𝐹𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴}))
2 df-iota 6376 . 2 (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}}
3 abid2 2881 . . . . 5 {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴})
43eqeq1i 2743 . . . 4 ({𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥})
54abbii 2809 . . 3 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
65unieqi 4849 . 2 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
71, 2, 63eqtri 2770 1 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {cab 2715  {csn 4558   cuni 4836  cima 5583  cio 6374  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426
This theorem is referenced by:  bj-imafv  35349  csbfv12gALTVD  42408
  Copyright terms: Public domain W3C validator