![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffv4 | Structured version Visualization version GIF version |
Description: The previous definition of function value, from before the ℩ operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 6082), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dffv4 | ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffv3 6878 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) | |
2 | df-iota 6486 | . 2 ⊢ (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} | |
3 | abid2 2863 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴}) | |
4 | 3 | eqeq1i 2729 | . . . 4 ⊢ ({𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥}) |
5 | 4 | abbii 2794 | . . 3 ⊢ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
6 | 5 | unieqi 4912 | . 2 ⊢ ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
7 | 1, 2, 6 | 3eqtri 2756 | 1 ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {cab 2701 {csn 4621 ∪ cuni 4900 “ cima 5670 ℩cio 6484 ‘cfv 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fv 6542 |
This theorem is referenced by: bj-imafv 36633 csbfv12gALTVD 44210 |
Copyright terms: Public domain | W3C validator |