MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv4 Structured version   Visualization version   GIF version

Theorem dffv4 6885
Description: The previous definition of function value, from before the operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 6088), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dffv4 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffv4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffv3 6884 . 2 (𝐹𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴}))
2 df-iota 6492 . 2 (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}}
3 abid2 2871 . . . . 5 {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴})
43eqeq1i 2737 . . . 4 ({𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥})
54abbii 2802 . . 3 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
65unieqi 4920 . 2 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
71, 2, 63eqtri 2764 1 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  {cab 2709  {csn 4627   cuni 4907  cima 5678  cio 6490  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fv 6548
This theorem is referenced by:  bj-imafv  36120  csbfv12gALTVD  43645
  Copyright terms: Public domain W3C validator