MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv4 Structured version   Visualization version   GIF version

Theorem dffv4 6879
Description: The previous definition of function value, from before the operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 6082), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dffv4 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffv4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffv3 6878 . 2 (𝐹𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴}))
2 df-iota 6486 . 2 (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}}
3 abid2 2863 . . . . 5 {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴})
43eqeq1i 2729 . . . 4 ({𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥})
54abbii 2794 . . 3 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
65unieqi 4912 . 2 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
71, 2, 63eqtri 2756 1 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  {cab 2701  {csn 4621   cuni 4900  cima 5670  cio 6484  cfv 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fv 6542
This theorem is referenced by:  bj-imafv  36633  csbfv12gALTVD  44210
  Copyright terms: Public domain W3C validator