| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffv4 | Structured version Visualization version GIF version | ||
| Description: The previous definition of function value, from before the ℩ operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 6084), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dffv4 | ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffv3 6877 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) | |
| 2 | df-iota 6489 | . 2 ⊢ (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} | |
| 3 | abid2 2873 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴}) | |
| 4 | 3 | eqeq1i 2741 | . . . 4 ⊢ ({𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥}) |
| 5 | 4 | abbii 2803 | . . 3 ⊢ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
| 6 | 5 | unieqi 4900 | . 2 ⊢ ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
| 7 | 1, 2, 6 | 3eqtri 2763 | 1 ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2714 {csn 4606 ∪ cuni 4888 “ cima 5662 ℩cio 6487 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: bj-imafv 37274 csbfv12gALTVD 44890 |
| Copyright terms: Public domain | W3C validator |