Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotaval2 | Structured version Visualization version GIF version |
Description: Version of iotaval 6429 using df-iota 6410 instead of dfiota2 6411. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
iotaval2 | ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iota 6410 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} | |
2 | eqeq1 2740 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} = {𝑤} ↔ {𝑦} = {𝑤})) | |
3 | sneqbg 4780 | . . . . . . 7 ⊢ (𝑦 ∈ V → ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤)) | |
4 | 3 | elv 3443 | . . . . . 6 ⊢ ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤) |
5 | equcom 2019 | . . . . . 6 ⊢ (𝑦 = 𝑤 ↔ 𝑤 = 𝑦) | |
6 | 4, 5 | bitri 275 | . . . . 5 ⊢ ({𝑦} = {𝑤} ↔ 𝑤 = 𝑦) |
7 | 2, 6 | bitrdi 287 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦)) |
8 | 7 | alrimiv 1928 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∀𝑤({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦)) |
9 | uniabio 6425 | . . 3 ⊢ (∀𝑤({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦) → ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = 𝑦) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = 𝑦) |
11 | 1, 10 | eqtrid 2788 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 {cab 2713 Vcvv 3437 {csn 4565 ∪ cuni 4844 ℩cio 6408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-un 3897 df-in 3899 df-ss 3909 df-sn 4566 df-pr 4568 df-uni 4845 df-iota 6410 |
This theorem is referenced by: iotauni2 6427 iotaval 6429 iotaex 6431 |
Copyright terms: Public domain | W3C validator |