MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaval2 Structured version   Visualization version   GIF version

Theorem iotaval2 6452
Description: Version of iotaval 6455 using df-iota 6437 instead of dfiota2 6438. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotaval2 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iotaval2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-iota 6437 . 2 (℩𝑥𝜑) = {𝑤 ∣ {𝑥𝜑} = {𝑤}}
2 eqeq1 2735 . . . . 5 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} = {𝑤} ↔ {𝑦} = {𝑤}))
3 sneqbg 4795 . . . . . . 7 (𝑦 ∈ V → ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤))
43elv 3441 . . . . . 6 ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤)
5 equcom 2019 . . . . . 6 (𝑦 = 𝑤𝑤 = 𝑦)
64, 5bitri 275 . . . . 5 ({𝑦} = {𝑤} ↔ 𝑤 = 𝑦)
72, 6bitrdi 287 . . . 4 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} = {𝑤} ↔ 𝑤 = 𝑦))
87alrimiv 1928 . . 3 ({𝑥𝜑} = {𝑦} → ∀𝑤({𝑥𝜑} = {𝑤} ↔ 𝑤 = 𝑦))
9 uniabio 6451 . . 3 (∀𝑤({𝑥𝜑} = {𝑤} ↔ 𝑤 = 𝑦) → {𝑤 ∣ {𝑥𝜑} = {𝑤}} = 𝑦)
108, 9syl 17 . 2 ({𝑥𝜑} = {𝑦} → {𝑤 ∣ {𝑥𝜑} = {𝑤}} = 𝑦)
111, 10eqtrid 2778 1 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  {cab 2709  Vcvv 3436  {csn 4576   cuni 4859  cio 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3907  df-ss 3919  df-sn 4577  df-pr 4579  df-uni 4860  df-iota 6437
This theorem is referenced by:  iotauni2  6453  iotaval  6455  iotaex  6457
  Copyright terms: Public domain W3C validator