![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaval2 | Structured version Visualization version GIF version |
Description: Version of iotaval 6544 using df-iota 6525 instead of dfiota2 6526. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
iotaval2 | ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iota 6525 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} | |
2 | eqeq1 2744 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} = {𝑤} ↔ {𝑦} = {𝑤})) | |
3 | sneqbg 4868 | . . . . . . 7 ⊢ (𝑦 ∈ V → ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤)) | |
4 | 3 | elv 3493 | . . . . . 6 ⊢ ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤) |
5 | equcom 2017 | . . . . . 6 ⊢ (𝑦 = 𝑤 ↔ 𝑤 = 𝑦) | |
6 | 4, 5 | bitri 275 | . . . . 5 ⊢ ({𝑦} = {𝑤} ↔ 𝑤 = 𝑦) |
7 | 2, 6 | bitrdi 287 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦)) |
8 | 7 | alrimiv 1926 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∀𝑤({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦)) |
9 | uniabio 6540 | . . 3 ⊢ (∀𝑤({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦) → ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = 𝑦) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = 𝑦) |
11 | 1, 10 | eqtrid 2792 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 {cab 2717 Vcvv 3488 {csn 4648 ∪ cuni 4931 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 |
This theorem is referenced by: iotauni2 6542 iotaval 6544 iotaex 6546 |
Copyright terms: Public domain | W3C validator |