| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaval2 | Structured version Visualization version GIF version | ||
| Description: Version of iotaval 6460 using df-iota 6442 instead of dfiota2 6443. (Contributed by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotaval2 | ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota 6442 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} | |
| 2 | eqeq1 2737 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} = {𝑤} ↔ {𝑦} = {𝑤})) | |
| 3 | sneqbg 4794 | . . . . . . 7 ⊢ (𝑦 ∈ V → ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤)) | |
| 4 | 3 | elv 3442 | . . . . . 6 ⊢ ({𝑦} = {𝑤} ↔ 𝑦 = 𝑤) |
| 5 | equcom 2019 | . . . . . 6 ⊢ (𝑦 = 𝑤 ↔ 𝑤 = 𝑦) | |
| 6 | 4, 5 | bitri 275 | . . . . 5 ⊢ ({𝑦} = {𝑤} ↔ 𝑤 = 𝑦) |
| 7 | 2, 6 | bitrdi 287 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦)) |
| 8 | 7 | alrimiv 1928 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∀𝑤({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦)) |
| 9 | uniabio 6456 | . . 3 ⊢ (∀𝑤({𝑥 ∣ 𝜑} = {𝑤} ↔ 𝑤 = 𝑦) → ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = 𝑦) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = 𝑦) |
| 11 | 1, 10 | eqtrid 2780 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 {cab 2711 Vcvv 3437 {csn 4575 ∪ cuni 4858 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-sn 4576 df-pr 4578 df-uni 4859 df-iota 6442 |
| This theorem is referenced by: iotauni2 6458 iotaval 6460 iotaex 6462 |
| Copyright terms: Public domain | W3C validator |