MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotanul Structured version   Visualization version   GIF version

Theorem iotanul 6514
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)

Proof of Theorem iotanul
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eu6 2574 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 dfiota2 6490 . . 3 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
3 alnex 1781 . . . . . 6 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ ¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
4 dfnul2 4316 . . . . . . 7 ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧}
5 equid 2012 . . . . . . . . . . . 12 𝑧 = 𝑧
65tbt 369 . . . . . . . . . . 11 (¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ (¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑧))
76biimpi 216 . . . . . . . . . 10 (¬ ∀𝑥(𝜑𝑥 = 𝑧) → (¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑧))
87con1bid 355 . . . . . . . . 9 (¬ ∀𝑥(𝜑𝑥 = 𝑧) → (¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑𝑥 = 𝑧)))
98alimi 1811 . . . . . . . 8 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑧𝑧 = 𝑧 ↔ ∀𝑥(𝜑𝑥 = 𝑧)))
10 abbi 2801 . . . . . . . 8 (∀𝑧𝑧 = 𝑧 ↔ ∀𝑥(𝜑𝑥 = 𝑧)) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)})
119, 10syl 17 . . . . . . 7 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)})
124, 11eqtr2id 2784 . . . . . 6 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
133, 12sylbir 235 . . . . 5 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
1413unieqd 4901 . . . 4 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
15 uni0 4916 . . . 4 ∅ = ∅
1614, 15eqtrdi 2787 . . 3 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
172, 16eqtrid 2783 . 2 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = ∅)
181, 17sylnbi 330 1 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  ∃!weu 2568  {cab 2714  c0 4313   cuni 4888  cio 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-v 3466  df-dif 3934  df-ss 3948  df-nul 4314  df-sn 4607  df-uni 4889  df-iota 6489
This theorem is referenced by:  iotassuniOLD  6515  iotaexOLD  6516  iotan0  6526  dfiota4  6528  csbiota  6529  tz6.12-2  6869  dffv3  6877  csbriota  7382  riotaund  7406  isf32lem9  10380  grpidval  18644  0g0  18647  iota0ndef  47035  iotan0aiotaex  47089
  Copyright terms: Public domain W3C validator