MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotanul Structured version   Visualization version   GIF version

Theorem iotanul 6469
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)

Proof of Theorem iotanul
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eu6 2573 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 dfiota2 6444 . . 3 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
3 alnex 1783 . . . . . 6 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ ¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
4 dfnul2 4283 . . . . . . 7 ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧}
5 equid 2015 . . . . . . . . . . . 12 𝑧 = 𝑧
65tbt 370 . . . . . . . . . . 11 (¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ (¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑧))
76biimpi 215 . . . . . . . . . 10 (¬ ∀𝑥(𝜑𝑥 = 𝑧) → (¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑧))
87con1bid 356 . . . . . . . . 9 (¬ ∀𝑥(𝜑𝑥 = 𝑧) → (¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑𝑥 = 𝑧)))
98alimi 1813 . . . . . . . 8 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑧𝑧 = 𝑧 ↔ ∀𝑥(𝜑𝑥 = 𝑧)))
10 abbi1 2805 . . . . . . . 8 (∀𝑧𝑧 = 𝑧 ↔ ∀𝑥(𝜑𝑥 = 𝑧)) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)})
119, 10syl 17 . . . . . . 7 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)})
124, 11eqtr2id 2790 . . . . . 6 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
133, 12sylbir 234 . . . . 5 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
1413unieqd 4877 . . . 4 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
15 uni0 4894 . . . 4 ∅ = ∅
1614, 15eqtrdi 2793 . . 3 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
172, 16eqtrid 2789 . 2 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = ∅)
181, 17sylnbi 330 1 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1539   = wceq 1541  wex 1781  ∃!weu 2567  {cab 2714  c0 4280   cuni 4863  cio 6441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-v 3445  df-dif 3911  df-in 3915  df-ss 3925  df-nul 4281  df-sn 4585  df-uni 4864  df-iota 6443
This theorem is referenced by:  iotassuniOLD  6470  iotaexOLD  6471  iotan0  6481  dfiota4  6483  csbiota  6484  tz6.12-2  6825  dffv3  6833  csbriota  7321  riotaund  7345  isf32lem9  10230  grpidval  18450  0g0  18453  iota0ndef  44955  iotan0aiotaex  45007
  Copyright terms: Public domain W3C validator