![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotanul | Structured version Visualization version GIF version |
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotanul | ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2572 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | dfiota2 6517 | . . 3 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
3 | alnex 1778 | . . . . . 6 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
4 | dfnul2 4342 | . . . . . . 7 ⊢ ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧} | |
5 | equid 2009 | . . . . . . . . . . . 12 ⊢ 𝑧 = 𝑧 | |
6 | 5 | tbt 369 | . . . . . . . . . . 11 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑧)) |
7 | 6 | biimpi 216 | . . . . . . . . . 10 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑧)) |
8 | 7 | con1bid 355 | . . . . . . . . 9 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
9 | 8 | alimi 1808 | . . . . . . . 8 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑧(¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
10 | abbi 2805 | . . . . . . . 8 ⊢ (∀𝑧(¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)}) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)}) |
12 | 4, 11 | eqtr2id 2788 | . . . . . 6 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
13 | 3, 12 | sylbir 235 | . . . . 5 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
14 | 13 | unieqd 4925 | . . . 4 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∪ ∅) |
15 | uni0 4940 | . . . 4 ⊢ ∪ ∅ = ∅ | |
16 | 14, 15 | eqtrdi 2791 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
17 | 2, 16 | eqtrid 2787 | . 2 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∅) |
18 | 1, 17 | sylnbi 330 | 1 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1776 ∃!weu 2566 {cab 2712 ∅c0 4339 ∪ cuni 4912 ℩cio 6514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-v 3480 df-dif 3966 df-ss 3980 df-nul 4340 df-sn 4632 df-uni 4913 df-iota 6516 |
This theorem is referenced by: iotassuniOLD 6542 iotaexOLD 6543 iotan0 6553 dfiota4 6555 csbiota 6556 tz6.12-2 6895 dffv3 6903 csbriota 7403 riotaund 7427 isf32lem9 10399 grpidval 18687 0g0 18690 iota0ndef 46989 iotan0aiotaex 47043 |
Copyright terms: Public domain | W3C validator |