MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotanul Structured version   Visualization version   GIF version

Theorem iotanul 6551
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)

Proof of Theorem iotanul
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eu6 2577 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 dfiota2 6526 . . 3 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
3 alnex 1779 . . . . . 6 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ ¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
4 dfnul2 4355 . . . . . . 7 ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧}
5 equid 2011 . . . . . . . . . . . 12 𝑧 = 𝑧
65tbt 369 . . . . . . . . . . 11 (¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ (¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑧))
76biimpi 216 . . . . . . . . . 10 (¬ ∀𝑥(𝜑𝑥 = 𝑧) → (¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ 𝑧 = 𝑧))
87con1bid 355 . . . . . . . . 9 (¬ ∀𝑥(𝜑𝑥 = 𝑧) → (¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑𝑥 = 𝑧)))
98alimi 1809 . . . . . . . 8 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑧𝑧 = 𝑧 ↔ ∀𝑥(𝜑𝑥 = 𝑧)))
10 abbi 2810 . . . . . . . 8 (∀𝑧𝑧 = 𝑧 ↔ ∀𝑥(𝜑𝑥 = 𝑧)) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)})
119, 10syl 17 . . . . . . 7 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)})
124, 11eqtr2id 2793 . . . . . 6 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
133, 12sylbir 235 . . . . 5 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
1413unieqd 4944 . . . 4 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
15 uni0 4959 . . . 4 ∅ = ∅
1614, 15eqtrdi 2796 . . 3 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = ∅)
172, 16eqtrid 2792 . 2 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = ∅)
181, 17sylnbi 330 1 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1535   = wceq 1537  wex 1777  ∃!weu 2571  {cab 2717  c0 4352   cuni 4931  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649  df-uni 4932  df-iota 6525
This theorem is referenced by:  iotassuniOLD  6552  iotaexOLD  6553  iotan0  6563  dfiota4  6565  csbiota  6566  tz6.12-2  6908  dffv3  6916  csbriota  7420  riotaund  7444  isf32lem9  10430  grpidval  18699  0g0  18702  iota0ndef  46954  iotan0aiotaex  47008
  Copyright terms: Public domain W3C validator