| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotanul | Structured version Visualization version GIF version | ||
| Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotanul | ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 2571 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | dfiota2 6443 | . . 3 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
| 3 | alnex 1782 | . . . . . 6 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 4 | dfnul2 4285 | . . . . . . 7 ⊢ ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧} | |
| 5 | equid 2013 | . . . . . . . . . . . 12 ⊢ 𝑧 = 𝑧 | |
| 6 | 5 | tbt 369 | . . . . . . . . . . 11 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑧)) |
| 7 | 6 | biimpi 216 | . . . . . . . . . 10 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑧)) |
| 8 | 7 | con1bid 355 | . . . . . . . . 9 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 9 | 8 | alimi 1812 | . . . . . . . 8 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑧(¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 10 | abbi 2798 | . . . . . . . 8 ⊢ (∀𝑧(¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)}) | |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)}) |
| 12 | 4, 11 | eqtr2id 2781 | . . . . . 6 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
| 13 | 3, 12 | sylbir 235 | . . . . 5 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
| 14 | 13 | unieqd 4871 | . . . 4 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∪ ∅) |
| 15 | uni0 4886 | . . . 4 ⊢ ∪ ∅ = ∅ | |
| 16 | 14, 15 | eqtrdi 2784 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
| 17 | 2, 16 | eqtrid 2780 | . 2 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∅) |
| 18 | 1, 17 | sylnbi 330 | 1 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∃!weu 2565 {cab 2711 ∅c0 4282 ∪ cuni 4858 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 df-nul 4283 df-sn 4576 df-uni 4859 df-iota 6442 |
| This theorem is referenced by: iotan0 6476 dfiota4 6478 csbiota 6479 tz6.12-2OLD 6816 dffv3 6824 csbriota 7324 riotaund 7348 isf32lem9 10259 grpidval 18571 0g0 18574 iota0ndef 47163 iotan0aiotaex 47217 |
| Copyright terms: Public domain | W3C validator |