| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotanul | Structured version Visualization version GIF version | ||
| Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotanul | ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 2574 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | dfiota2 6490 | . . 3 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
| 3 | alnex 1781 | . . . . . 6 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 4 | dfnul2 4316 | . . . . . . 7 ⊢ ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧} | |
| 5 | equid 2012 | . . . . . . . . . . . 12 ⊢ 𝑧 = 𝑧 | |
| 6 | 5 | tbt 369 | . . . . . . . . . . 11 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑧)) |
| 7 | 6 | biimpi 216 | . . . . . . . . . 10 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑧)) |
| 8 | 7 | con1bid 355 | . . . . . . . . 9 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 9 | 8 | alimi 1811 | . . . . . . . 8 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑧(¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 10 | abbi 2801 | . . . . . . . 8 ⊢ (∀𝑧(¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)}) | |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)}) |
| 12 | 4, 11 | eqtr2id 2784 | . . . . . 6 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
| 13 | 3, 12 | sylbir 235 | . . . . 5 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
| 14 | 13 | unieqd 4901 | . . . 4 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∪ ∅) |
| 15 | uni0 4916 | . . . 4 ⊢ ∪ ∅ = ∅ | |
| 16 | 14, 15 | eqtrdi 2787 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
| 17 | 2, 16 | eqtrid 2783 | . 2 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∅) |
| 18 | 1, 17 | sylnbi 330 | 1 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∃!weu 2568 {cab 2714 ∅c0 4313 ∪ cuni 4888 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-sn 4607 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: iotassuniOLD 6515 iotaexOLD 6516 iotan0 6526 dfiota4 6528 csbiota 6529 tz6.12-2 6869 dffv3 6877 csbriota 7382 riotaund 7406 isf32lem9 10380 grpidval 18644 0g0 18647 iota0ndef 47035 iotan0aiotaex 47089 |
| Copyright terms: Public domain | W3C validator |