Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotanul | Structured version Visualization version GIF version |
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotanul | ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2575 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | dfiota2 6298 | . . 3 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
3 | alnex 1788 | . . . . . 6 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
4 | dfnul2 4214 | . . . . . . 7 ⊢ ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧} | |
5 | equid 2024 | . . . . . . . . . . . 12 ⊢ 𝑧 = 𝑧 | |
6 | 5 | tbt 373 | . . . . . . . . . . 11 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑧)) |
7 | 6 | biimpi 219 | . . . . . . . . . 10 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑧)) |
8 | 7 | con1bid 359 | . . . . . . . . 9 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
9 | 8 | alimi 1818 | . . . . . . . 8 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑧(¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
10 | abbi1 2801 | . . . . . . . 8 ⊢ (∀𝑧(¬ 𝑧 = 𝑧 ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)}) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ¬ 𝑧 = 𝑧} = {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)}) |
12 | 4, 11 | eqtr2id 2786 | . . . . . 6 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
13 | 3, 12 | sylbir 238 | . . . . 5 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
14 | 13 | unieqd 4810 | . . . 4 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∪ ∅) |
15 | uni0 4826 | . . . 4 ⊢ ∪ ∅ = ∅ | |
16 | 14, 15 | eqtrdi 2789 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∅) |
17 | 2, 16 | syl5eq 2785 | . 2 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∅) |
18 | 1, 17 | sylnbi 333 | 1 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∀wal 1540 = wceq 1542 ∃wex 1786 ∃!weu 2569 {cab 2716 ∅c0 4211 ∪ cuni 4796 ℩cio 6295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-in 3850 df-ss 3860 df-nul 4212 df-sn 4517 df-uni 4797 df-iota 6297 |
This theorem is referenced by: iotassuni 6318 iotaex 6319 iotan0 6329 dfiota4 6331 csbiota 6332 tz6.12-2 6663 dffv3 6670 csbriota 7143 riotaund 7167 isf32lem9 9861 grpidval 17987 0g0 17990 iota0ndef 44072 iotan0aiotaex 44117 |
Copyright terms: Public domain | W3C validator |