| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotacl | Structured version Visualization version GIF version | ||
| Description: Membership law for
descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 6467). If you have a bounded iota-based definition, riotacl2 7363 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotacl | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota4 6495 | . 2 ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | |
| 2 | df-sbc 3757 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑥]𝜑 ↔ (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!weu 2562 {cab 2708 [wsbc 3756 ℩cio 6465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 |
| This theorem is referenced by: riotacl2 7363 opiota 8041 eroprf 8791 iunfictbso 10074 isf32lem9 10321 psgnvali 19445 fourierdlem36 46148 |
| Copyright terms: Public domain | W3C validator |