![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotacl | Structured version Visualization version GIF version |
Description: Membership law for
descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 6064). If you have a bounded iota-based definition, riotacl2 6852 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
iotacl | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota4 6082 | . 2 ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | |
2 | df-sbc 3634 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑥]𝜑 ↔ (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | sylib 210 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ∃!weu 2608 {cab 2785 [wsbc 3633 ℩cio 6062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-v 3387 df-sbc 3634 df-un 3774 df-sn 4369 df-pr 4371 df-uni 4629 df-iota 6064 |
This theorem is referenced by: riotacl2 6852 opiota 7464 eroprf 8084 iunfictbso 9223 isf32lem9 9471 psgnvali 18241 fourierdlem36 41103 |
Copyright terms: Public domain | W3C validator |