Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotacl | Structured version Visualization version GIF version |
Description: Membership law for
descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 6297). If you have a bounded iota-based definition, riotacl2 7144 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
iotacl | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota4 6320 | . 2 ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | |
2 | df-sbc 3681 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑥]𝜑 ↔ (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | sylib 221 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ∃!weu 2569 {cab 2716 [wsbc 3680 ℩cio 6295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-sbc 3681 df-un 3848 df-in 3850 df-ss 3860 df-sn 4517 df-pr 4519 df-uni 4797 df-iota 6297 |
This theorem is referenced by: riotacl2 7144 opiota 7782 eroprf 8426 iunfictbso 9614 isf32lem9 9861 psgnvali 18754 fourierdlem36 43226 |
Copyright terms: Public domain | W3C validator |