| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotacl | Structured version Visualization version GIF version | ||
| Description: Membership law for
descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 6437). If you have a bounded iota-based definition, riotacl2 7319 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotacl | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota4 6462 | . 2 ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | |
| 2 | df-sbc 3742 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑥]𝜑 ↔ (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃!weu 2563 {cab 2709 [wsbc 3741 ℩cio 6435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3742 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 df-uni 4860 df-iota 6437 |
| This theorem is referenced by: riotacl2 7319 opiota 7991 eroprf 8739 iunfictbso 10002 isf32lem9 10249 psgnvali 19418 fourierdlem36 46180 |
| Copyright terms: Public domain | W3C validator |