![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotasbc | Structured version Visualization version GIF version |
Description: Substitution law for descriptions. Compare iotasbc 44415. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotasbc | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssab 4095 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
2 | riotacl2 7404 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sselid 3993 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) |
4 | df-sbc 3792 | . 2 ⊢ ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) | |
5 | 3, 4 | sylibr 234 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {cab 2712 ∃!wreu 3376 {crab 3433 [wsbc 3791 ℩crio 7387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-riota 7388 |
This theorem is referenced by: riotass2 7418 riotass 7419 cjth 15139 joinlem 18441 meetlem 18455 finxpreclem4 37377 poimirlem26 37633 riotasvd 38938 lshpkrlem3 39094 tfsconcatfv 43331 |
Copyright terms: Public domain | W3C validator |