| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotasbc | Structured version Visualization version GIF version | ||
| Description: Substitution law for descriptions. Compare iotasbc 44408. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotasbc | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssab 4048 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
| 2 | riotacl2 7360 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3944 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) |
| 4 | df-sbc 3754 | . 2 ⊢ ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 ∃!wreu 3352 {crab 3405 [wsbc 3753 ℩crio 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-riota 7344 |
| This theorem is referenced by: riotass2 7374 riotass 7375 cjth 15069 joinlem 18342 meetlem 18356 finxpreclem4 37382 poimirlem26 37640 riotasvd 38949 lshpkrlem3 39105 tfsconcatfv 43330 |
| Copyright terms: Public domain | W3C validator |