MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotasbc Structured version   Visualization version   GIF version

Theorem riotasbc 7324
Description: Substitution law for descriptions. Compare iotasbc 44396. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 4036 . . 3 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
2 riotacl2 7322 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3933 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
4 df-sbc 3743 . 2 ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
53, 4sylibr 234 1 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {cab 2707  ∃!wreu 3341  {crab 3394  [wsbc 3742  crio 7305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-un 3908  df-ss 3920  df-sn 4578  df-pr 4580  df-uni 4859  df-iota 6438  df-riota 7306
This theorem is referenced by:  riotass2  7336  riotass  7337  cjth  15010  joinlem  18287  meetlem  18301  finxpreclem4  37372  poimirlem26  37630  riotasvd  38939  lshpkrlem3  39095  tfsconcatfv  43318
  Copyright terms: Public domain W3C validator