![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotasbc | Structured version Visualization version GIF version |
Description: Substitution law for descriptions. Compare iotasbc 39401. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotasbc | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssab 3887 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
2 | riotacl2 6852 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sseldi 3796 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) |
4 | df-sbc 3634 | . 2 ⊢ ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) | |
5 | 3, 4 | sylibr 226 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 {cab 2785 ∃!wreu 3091 {crab 3093 [wsbc 3633 ℩crio 6838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-un 3774 df-in 3776 df-ss 3783 df-sn 4369 df-pr 4371 df-uni 4629 df-iota 6064 df-riota 6839 |
This theorem is referenced by: riotass2 6866 riotass 6867 cjth 14184 joinlem 17326 meetlem 17340 finxpreclem4 33729 poimirlem26 33924 riotasvd 34977 lshpkrlem3 35133 |
Copyright terms: Public domain | W3C validator |