| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotasbc | Structured version Visualization version GIF version | ||
| Description: Substitution law for descriptions. Compare iotasbc 44522. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotasbc | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssab 4032 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
| 2 | riotacl2 7319 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3927 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) |
| 4 | df-sbc 3737 | . 2 ⊢ ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {cab 2709 ∃!wreu 3344 {crab 3395 [wsbc 3736 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 df-uni 4857 df-iota 6437 df-riota 7303 |
| This theorem is referenced by: riotass2 7333 riotass 7334 cjth 15010 joinlem 18287 meetlem 18301 finxpreclem4 37438 poimirlem26 37696 riotasvd 39065 lshpkrlem3 39221 tfsconcatfv 43444 |
| Copyright terms: Public domain | W3C validator |